
Formation Flying Module

−2

0

2

−2
−1

0
1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

XY

Z

−2

−1.5

−1

−0.5

0

0.5

−3
−2

−1
0

1
2

−1
0

1
2

3
Delta−V = 0.300841 m/s

y

z

x

y x

x

y

Hills

Frenet

x

z

LVLH

This software described in this document is furnished under a license agreement. The software may be used, copied or translated
into other languages only under the terms of the license agreement.

Formation Flying Module

February 10, 2011

c©Copyright 2004-2006, 2011 by Princeton Satellite Systems, Inc. All rights reserved.

MATLAB is a trademark of the MathWorks.

All other brand or product names are trademarks or registered trademarks of their respective companies or organizations.

Princeton Satellite Systems, Inc.
6 Market St. Suite 926
Plainsboro, New Jersey 08536

Technical Support/Sales/Info: http://www.psatellite.com

ii

CONTENTS

List of Figures v

1 Overview 1
1.1 Formation Flying . 1
1.2 Features . 2
1.3 Organization . 2
1.4 Getting Started . 3

2 Coordinate Frames 5
2.1 Overview . 5
2.2 Orbital Element Sets . 6
2.3 Relative Coordinate Systems . 7

2.3.1 Orbital Element Differences . 7
2.3.2 Cartesian Coordinate Systems . 7
2.3.3 Geometric Parameter Sets . 9

3 Relative Orbit Dynamics 13
3.1 Organization . 13
3.2 Relative Dynamics in Circular Orbits . 13
3.3 Relative Dynamics in Eccentric Orbits . 15

4 Formation Design 19
4.1 Introduction . 19
4.2 The Formation Design GUI: An Overview . 19
4.3 How to Use The Formation Design GUI . 21

4.3.1 Defining the Reference Orbit . 21
4.3.2 Adding a Satellite . 21
4.3.3 Saving and Loading Formation Design Files . 21
4.3.4 Selecting a Satellite . 22
4.3.5 Creating a Team . 22
4.3.6 Defining the Relative Geometry . 22
4.3.7 Viewing Relative State Data . 23
4.3.8 Viewing the Team Organization . 23
4.3.9 Viewing Relative Trajectories . 23
4.3.10 Finding the Minimum Distance . 24

5 Guidance and Control 25
5.1 Guidance Functions . 25

5.1.1 Formation Flying Guidance . 25
5.1.2 Team Goals . 26
5.1.3 Cost Estimation . 29
5.1.4 Assignment . 31

iii

CONTENTS CONTENTS

5.2 Control Functions . 32
5.2.1 Formation Flying Control . 32
5.2.2 Standard Feedback Control . 33
5.2.3 Model Predictive Control . 34
5.2.4 Closed-Form Solution . 36
5.2.5 Linear Programming . 37

6 Simulations 41
6.1 Overview . 41
6.2 FFMaintenanceSim . 42
6.3 DFFSim . 43
6.4 DFFSimulation . 43

6.4.1 Introduction . 43
6.4.2 Software Overview . 44
6.4.3 Running a Simulation . 46
6.4.4 Viewing Simulation Results . 47
6.4.5 Preparing Command Lists . 47

7 Formation Flying References 49
7.1 Web Sites . 49
7.2 Publications . 50

Bibliography 51

Index 53

iv

LIST OF FIGURES

2.1 Orbital Elements . 6
2.2 Relative Orbit Coordinate Frames . 8
2.3 In-Plane Projection of Orbit With Different Relative Frames . 9
2.4 Geometric Parameters for Circular Orbits . 10
2.5 Eccentric Parameters for Circular Orbits . 11

3.1 Results from FFEccFrameCompare Demo . 16

4.1 Formation Design GUI . 20
4.2 Team Organization for Cascading Tetrahedron Example . 23
4.3 Trajectories for the Cascading Tetrahedron Formation . 24

5.1 Case 10 Formation Shown in Animation GUI . 28
5.2 Case 10 Formation Shown with ViewFormation . 28
5.3 Comparison of Cost Estimates Using Different Initial Trajectories 30
5.4 Organizational Structure of Control Methods . 33
5.5 Results from LQGEccDemo . 34
5.6 Demo of IterativeImpulsiveManeuver . 35
5.7 Demo of ImpulsiveManeuver . 37
5.8 Delta-V and Trajectory Results from LPvsCF . 38
5.9 Position Error vs. Number of Samples for Increasing Eccentricity 39
5.10 Plots from EccentricControlAnalysis . 40

6.1 In-Plane Trajectories for Slow and Fast Reconfigurations . 43
6.2 DFFSim Reconfiguration Demo . 44
6.3 Block Diagram of the Task-Based Software Architecture for the DFF System 45
6.4 Simulation Display Windows . 46
6.5 PlottingTool With Simulation Data and Applied Template . 47

v

LIST OF FIGURES LIST OF FIGURES

vi

CHAPTER 1

OVERVIEW

1.1 Formation Flying

The definition of formation flying given by NASA Goddard Space Flight Center is:

The tracking or maintenance of a desired relative separation, orientation or position between or among
spacecraft.

This definition captures the essential, unique traits of several different formation flying mission concepts. There
are two basic, independent motivations for formation flying missions. The first is a need to realize extremely large
baselines for ambitious remote sensing applications, such as the Terrestrial Planet Finder (TPF) mission. A paper by
Jesse Leitner of NASA Goddard states the following[Lei04]:

... for orders of magnitude improved resolution as required for imaging black holes, imaging planets, or
performing asteroseismology, the only viable approach will be to fly a collection of spacecraft in formation
to synthesize a virtual segmented telescope or interferometer with very large baselines.

The second motivation for distributing space missions across multiple neighboring satellites is the desire to increase
mission-level robustness and configurability. In this case, the goal would be to achieve greater redundancy by dis-
tributing functionality across multiple satellites, eliminating the possibility of single-point failures. The other benefit
would be enhanced flexibility or configurability, in that the formation geometry is free to be changed throughout the
mission to accomplish different objectives.

In general, formation flying missions can be flown in the following different types of orbital regimes:

• Central body orbits

– Circular

– Eccentric

• Lagrange points

The Formation Flying Module supports the design, simulation, and analysis of formation geometries for both circular
and eccentric orbits about a central body. In these missions, a formation is composed of several individual trajec-
tories, where each trajectory describes the relative motion of one satellite with respect to a common reference. The

1

1.2. FEATURES CHAPTER 1. OVERVIEW

module also provides a variety of decentralized guidance and control algorithms, and a fully integrated simulation that
implements the algorithms into a distributed software framework for mission analysis.

This User’s Guide provides a thorough description of the module’s features and organization, and provides several
examples to help get you started. In addition to basic coordinate transformations and simulation tools, this module
includes a great deal of newly developed algorithms for formation guidance and control. To read more about the
theory behind these algorithms, please consult the “Formation Flying” chapter in PSS’ textbook: Spacecraft Attitude
and Orbit Control.

A thorough description of the module’s features and organization are provided in the next sections.

1.2 Features

The Formation Flying module offers a wide range of utilities for the design, simulation, and analysis of spacecraft
formations and formation control software. The primary features include:

• Full support for both circular and eccentric orbits

• Coordinate rotations between ECI and several relative frames, including: differential elements, cartesian Hills,
cartesian LVLH, cartesian Frenet, geometric parameters.

• A variety of models for relative dynamics, including: Clohessy-Wiltshire (or Hill’s) equations, Lawden’s equa-
tions, Gauss’ variational equations.

• Formation design utilities, including a graphical user interface (GUI).

• Decentralized optimal guidance routines that use shared information to assign target states.

• Model Predictive Control algorithms that compute fuel-optimal impulsive control trajectories to reach target
states

• Collision monitoring and avoidance utilities, based upon set membership theory.

• Fully integrated simulation that includes decentralized guidance and control software, inertial frame state inte-
gration, user-defined time-tagged command scripts, and post-simulation analysis tools.

1.3 Organization

The Formation Flying module is organized into the following folders.

Analysis
Analyze the performance of guidance and control algorithms in closed-loop simulations, compare different
methods of relative state propagation.

Collision
Calculate the probability of collision

Control
Plan a maneuvers with an impulsive delta-v sequence to reach a target state at a future time

Coord
Manipulate geometric parameters, add/subtract orbital element differences, initialize orbital elements for speci-
fied formations.

2

CHAPTER 1. OVERVIEW 1.4. GETTING STARTED

DataStructures
Define the data structures used throughout the Formation Flying module

Demos
Demonstrate functionality for: collision monitoring, control laws, guidance laws, maneuvers in circular and
eccentric orbits

Dynamics
Continuous and discrete-time forms of Hills equations, ECI-frame integration of neighboring orbits.

Eccentric
A variety of functions for defining relative motion and modeling relative dynamics in eccentric orbits.

Guidance
Compute geometric parameters to realize specified formation geometries, assign target states to satellites to
minimize total fuel consumption.

IntegratedSim
Complete integrated simulation and software for decentralized guidance and control. The software is organized
into several distinct modules, and it makes use of the guidance, control and coordinate transformation functions
in this toolbox.

LP
Model predictive control algorithms (for circular and eccentric orbits) that compute fuel-optimal impulsive
maneuvers using linear programming techniques and the Simplex method.

Transformation
A variety of coordinate transformations, including rotations between the following frames: ECI, Hills (LVLH),
element differences, geometric parameters (separate parameter sets for circular and eccentric orbits).

Utility
A miscellaneous collection of utilities.

Visual
Tools for visualizing formations and relative orbital motion.

1.4 Getting Started

The best way to get started is to try the FormationDesignGUI. Simply type:

>> FormationDesignGUI

This GUI will enable you to specify the reference orbit for your formation, add satellites to build up the formation,
and design the formation geometry by prescribing geometric parameters to each satellite.

Next, try running a simulation. There are a few different types of simulations included in the Formation Flying module.
You should first try the simulation called DFFSim. Examine the scope and usage of this function first by viewing the
help comments:

>> help DFFSim

Like many functions in this module, it can be executed with no inputs. If an input is not provided, it simply uses its
own default value. You can see what the default values are by opening the function and examining the lines of code
that immediately follow the help comments at the top of the file.

>> edit DFFSim

3

1.4. GETTING STARTED CHAPTER 1. OVERVIEW

The default values are defined by checking the number of inputs with the nargin command, and supplying a default
value when necessary. In this function, seven spacecraft are initialized in a leader-follower formation, in a circular
orbit. The desired formation is a projected circle on the cross-track / along-track plane. The act of maneuvering from
the first formation (leader-follower) to the next formation (projected circle) is called a reconfiguration maneuver. The
target states that form the projected circle geometry are computed and assigned to each spacecraft in order to minimize
the total fuel required for the reconfiguration. Each spacecraft then uses a model predictive control algorithm to plan
an impulsive transfer trajectory that will bring it to its target state.

4

CHAPTER 2

COORDINATE FRAMES

This chapter describes the different coordinate frames utilized in the Formation Flying module.

2.1 Overview

The coordinate systems used in this module can first be divided into 2 major groups: absolute and relative. Absolute
coordinates describe the motion of a satellite with respect to its central body, i.e the Earth. Relative coordinates
describe the motion of a satellite with respect to a point (i.e. another satellite) on the reference orbit.

A summary of the different types of coordinate systems is provided below:

• Absolute Coordinate Systems

– Earth Centered Inertial (ECI)

– Orbital Elements

∗ Standard [a, i,Ω, ω, e,M]

∗ Alfriend [a, θ, i, q1, q2,Ω]

∗ Mean and Osculating

• Relative Coordinate Systems

– Differential Elements

– Cartesian Frames

∗ Hill’s Frame

∗ LVLH Frame

∗ Frenet Frame

– Geometric Parameters

An important note on terminology: Throughout this module and the User’s Guide, the satellites with relative motion
are termed relatives, and the satellite that they move with respect to is termed the reference.

5

2.2. ORBITAL ELEMENT SETS CHAPTER 2. COORDINATE FRAMES

2.2 Orbital Element Sets

The Formation Flying module makes use of two different orbital element sets. The standard set is defined as:

[a, i,Ω, ω, e,M]

where a is the semi-major axis, i is the inclination, Ω is the right ascension (longitude) of the ascending node, ω is
the argument of perigee, e is the eccentricity, and M is the mean anomaly. This is the standard set of elements used
throughout the Spacecraft Control Toolbox.

The orbital elements are illustrated in Figure 2.1. This diagram shows the position r, velocity v, semimajor axis a,
eccentricity e, inclination i, right ascension Ω, true anomaly ν, argument of perigee ω, the argument of latitude θ, and
the angular momentum vector H .

Figure 2.1. Orbital Elements

I

J

r

Ω

Vernal
Equinox

Line of
 Nodes

i

ν

K

H

Perigee

Apogee

θ

2π-ω

i

v

a(1-e)

a(1+e)

A second set of elements is particularly useful for formation flying applications. This set is termed the Alfriend
element set, after Dr. Terry Alfriend of Texas A&M who first suggested its use. The Alfriend set is:

[a, θ, i, q1, q2,Ω]

where a, i,Ω are defined as before. The remaining elements, q1, q2, θ, are defined in order to avoid the problem that
arises at zero eccentricity, where the argument of perigee and Mean anomaly are undefined.

The angle θ is the argument of latitude, defined as:

θ = ω + ν

where ν is the true anomaly. The Alfriend elements are used solely with circular or near-circular orbits. Therefore, the
true anomaly is equal to the mean anomaly and the argument of latitude is expressed as θ = ω +M . The parameters
q1, q2 are defined as:

q1 = e cos(ω)

6

CHAPTER 2. COORDINATE FRAMES 2.3. RELATIVE COORDINATE SYSTEMS

q2 = e sin(ω)

The functions Alfriend2El and El2Alfriend can be used to convert between the two element sets.

Either of the two above element sets can be defined as mean or osculating. When orbits are governed by a point-
mass model for the central body’s gravity field, the elements do not osculate. The introduction of non-uniform mass
distribution in the central body, such as the widening or oblateness of the Earth at its equator, creates a gravitational
perturbation that causes the elements to change over time, or osculate.

When ECI position and velocity is simulated with a non-spherical gravity field (i.e. with the GEMT1.mat model), the
orbital elements computed from the ECI state will be osculating.

The function Osc2Mean will convert osculating elements to mean elements. The elements must be defined in the
Alfriend system.

Similarly, the function ECI2MeanElements will compute the mean elements directly from an ECI state.

2.3 Relative Coordinate Systems

This section describes 3 different types of coordinate systems for expressing the relative orbital states of spacecraft.
The Formation Flying module provides coordinate transformation utilities to switch back and forth between all 3
systems.

2.3.1 Orbital Element Differences

One way to define a relative orbit is to use orbital element differences. A differential orbital element vector is simply
the difference between the orbital element vectors of two satellites.

Just as with regular, absolute orbits, this is a convenient way to parameterize the motion of a relative orbit. In the
absence of disturbances and gravitational perturbations, 5 of the 6 differential orbital elements remain fixed; only the
mean (or true) anomaly changes.

The function OrbElemDiff can be used to robustly subtract two element vectors. This function ensures that angle
differences around the wrapping points of ±π and (0, 2π) are computed properly.

2.3.2 Cartesian Coordinate Systems

The most intuitive way to visualize and understand relative motion is to express that motion in 3 dimensional space.
In this case, the satellites have a 3 dimensional relative position vector and a 3 dimensional relative velocity vector.
The relative motion of one satellite with respect to another is expressed in a coordinate system that is attached to the
reference satellite.

The Formation Flying module supports three different coordinate systems for relative orbital motion:

• Hills

• LVLH

• Frenet

7

2.3. RELATIVE COORDINATE SYSTEMS CHAPTER 2. COORDINATE FRAMES

Each frame is attached to the reference satellite, and rotates once per orbit. Two axes are contained in the orbital plane,
and the third axis points normal to the plane. A diagram of each frame is shown in Figure 2.2. For simplicity, the
frames are shown with a circular reference orbit.

Figure 2.2. Relative Orbit Coordinate Frames

x

y

z

(a) Hills Frame

z

x

y

(b) LVLH Frame

y

x

z

(c) Frenet Frame

The coordinate frame used most often in this module is the Hills frame. It has the x axis aligned in the radial (zenith)
direction, the z axis pointing out-of-plane, aligned with the angular momentum vector, and the y axis completes the
right-handed system.

The LVLH frame stands for “local-vertical, local-horizontal”. In truth, each of the frames shown here is a local-vertical,
local-horizontal frame. However, a common definition for the orbital LVLH frame is that shown in Figure 2.2. We
distinguish this LVLH frame from the Hills and Frenet frames to ensure clarity and avoid confusion.

As Figure 2.2 shows, each frame is simply 1-2 orthogonal rotations from the others. This is always true for the Hills
and LVLH frames, as they always have one axis parallel with the orbit position vector, and one axis parallel with the
orbit normal. Therefore, there exists a constant rotation matrix to rotate between the Hills and LVLH frames. The
Frenet frame is different, in that it has one axis parallel to the orbit velocity vector instead of the position vector.
Therefore, in eccentric orbits, the Frenet frame will appear to oscillate back and forth about its z axis, when compared
to the Hills or LVLH frames.

To illustrate the effect of eccentricity, Figure 2.3 on the facing page shows the in-plane projection of the three coordi-
nate frames in an eccentric orbit. Note how the x and z axes of the Hills and LVLH frames, respectively, are always
aligned with the radial/zenith direction, whereas the x axis of the Frenet frame is always aligned with the velocity
vector.

To compute a Hills-frame state from two inertial states, use the function: ECI2Hills.

To transform between the Hills and LVLH frames, use the functions: Hills2LVLH and LVLH2Hills.

To transform from the Hills frame to the Frenet frame, use the function: Hills2Frenet.

8

CHAPTER 2. COORDINATE FRAMES 2.3. RELATIVE COORDINATE SYSTEMS

Figure 2.3. In-Plane Projection of Orbit With Different Relative Frames

y x

x

y

Hills

Frenet

x

z

LVLH

2.3.3 Geometric Parameter Sets

The previous coordinate systems provide an exact way to express the relative orbit state. The Formation Flying module
also enables you to express desired relative states using geometric parameters. In formation flying, we are generally
interested in defining relative orbit trajectories that repeat once each period. This is referred to as “T-Periodic Motion”,
and is discussed in Chapter 3. When the trajectory repeats itself periodically, it forms a specific geometric shape in
3 dimensional space.

Through our work with NASA Goddard and the Air Force Research Laboratory, PSS has developed sets of geometric
parameters that can be used to uniquely describe the shape of T-periodic trajectories in circular and eccentric orbits.

For T-periodic motion in circular orbits, the in-plane motion takes on the shape of a 2x1 ellipse, with the longer side
oriented in the along-track direction and the shorter side along the radial direction. As we know from Hill’s equations,
the cross-track motion is just a harmonic oscillator, decoupled from the in-plane motion, with a natural frequency
equal to the orbit rate.

Circular geometries are defined with the following parameters, shown in Table 2.1:

Table 2.1. Geometric Parameters for Circular Orbits

Parameter Description
y0 y0 Along-track offset of the center of the in-plane motion
aE aE Semi-major axis of relative 2x1 in-plane ellipse
beta β Phase angle on ellipse (measured positive clockwise from nadir axis to velocity vector) when

the satellite is at the ascending node
zInc zi Cross-track amplitude due to inclination (Inc) difference
zLan zΩ Cross-track amplitude due to longitude of ascending node (Lan) difference

Use the function Geometry Structure to create a data structure of circular geometry parameters:

>> g = Geometry_Structure

9

2.3. RELATIVE COORDINATE SYSTEMS CHAPTER 2. COORDINATE FRAMES

g =
y0: 0
aE: 0

beta: 0
zInc: 0
zLan: 0

A diagram illustrating these parameters is shown in Figure 2.4.

Figure 2.4. Geometric Parameters for Circular Orbits

yH

|z|

aE
2

β0

xH xH

yHzH

aE|z| y0

xH

yH

zH

aEy0

|z|

xH

zH

|z|
|z|

aE

y0

Separating the cross-track geometry into the contributions from inclination and right ascension differences provides
useful insight into the stability of the trajectory. As we know, the J2 perturbation (Earth oblateness) causes secular
drift in several orbital elements. If the secular drift is the same for both orbits, then there is no relative secular drift
introduced by J2. It turns out that J2 has two significant impacts on relative motion: 1) it can cause secular drift in the
along-track direction, and 2) it can create a frequency difference between the in-plane and out-of-plane motion. For
the stability of formations, we seek to minimize the amount of along-track drift. It can be shown that the along-track
drift due to right ascension differences is much smaller than that due to inclination differences. This is the motivation
for defining the cross-track geometry parameters according to inclination and right ascension differences.

The geometry for eccentric orbits is not nearly as simple as in circular orbits. However, relative motion in eccentric
orbits does have some things in common with that of circular orbits. The in-plane and out-of-plane motion is still
decoupled, and the radial oscillation is still symmetric about the along-track axis. The cross-track oscillation is not
necessarily symmetric, though, and the in-plane trajectory is no longer constrained to an ellipse – it can take on a
continuum of shapes.

Although the eccentric orbit relative motion is more complex, the trajectory can still be reduced to 5 geometric param-
eters. The eccentric geometry parameters are described in Table 2.2 on the next page:

10

CHAPTER 2. COORDINATE FRAMES 2.3. RELATIVE COORDINATE SYSTEMS

Table 2.2. Geometric Parameters for Eccentric Orbits

Parameter Name Description
y0 y0 Along-track offset of the center of the in-plane motion
xMax x̄ Maximum radial amplitude
nu xMax νx True anomaly where maximum (positive) radial amplitude occurs
zMax z̄ Maximum (positive) cross-track amplitude
nu zMax νz True anomaly where maximum (positive) cross-track amplitude occurs

Use the function EccGeometry Structure to create a data structure of eccentric geometry parameters:

>> g = EccGeometry_Structure
g =

y0: 0
xMax: 0

nu_xMax: 0
zMax: 0

nu_zMax: 0

Examples of two different relative trajectories are shown in Figure 2.5. For each trajectory, y0 = x̄ = z̄ = 1. For the
trajectory on the left: e = 0.7, νx = 900, and νz = 1800. On the right, e = 0.7, νx = 900, and νz = 126.90. This
value was chosen for νz because it corresponds to an eccentric anomaly of 900, which results in symmetric cross-track
motion.

Figure 2.5. Eccentric Parameters for Circular Orbits

−2
−1

0
1

2
3

−2
−1

0
1

2
3

−2

−1

0

1

2

 x [km]
Radial

z
_

y
0

x
_

 y [km]
Along−Track

z [km]
Cross−
Track

−2

0

2

−4

−2

0

2

4

−3

−2

−1

0

1

2

 x [km]
Radial

y
0

z
_

x
_

 y [km]
Along−Track

z [km]
Cross−
Track

To generate these plots in MATLAB, type:

>> IllustrateEccentricGeometry

For small values of eccentricity (e < 0.001), you can use either the circular or eccentric geometric parameters. To
switch between the two:

gEcc = GeometryCirc2Ecc(w, gCirc);
gCirc = GeometryEcc2Circ(w, gEcc);

where w is the argument of perigee.

A number of transformation functions are provided in the Transformation folder. The following table summarizes
the different transformations between various coordinate frames that are possible. The notation x refers to a state with

11

2.3. RELATIVE COORDINATE SYSTEMS CHAPTER 2. COORDINATE FRAMES

position and velocity, e is an orbital element set, and g is a set of geometric parameters. The ∆ prefix indicates a
relative state. The subscripts are defined as: H (Hills), L (LVLH), F (Frenet), S (Standard), A (Alfriend), C (Circular),
E (Eccentric).

Table 2.3. Coordinate Transformations

xECI eS eA ∆xH ∆xL ∆xF ∆eS ∆eA ∆gC ∆gE

xECI -
√ √ √

eS
√

-
√ √

eA
√

-
√

∆xH
√

-
√ √ √ √ √ √

∆xL
√ √

-
∆xF

√
-

∆eS
√ √

-
√ √ √

∆eA
√ √ √

-
√ √

∆gC
√ √ √

-
√

∆gE
√ √ √ √

-

12

CHAPTER 3

RELATIVE ORBIT DYNAMICS

This chapter describes the toolbox functions that model the relative orbit dynamics.

3.1 Organization

The dynamics functions are organized into two separate folders:

• Dynamics

• EccDynamics

The Dynamics folder contains a few different functions that are strictly for circular orbit dynamics, and some functions
that are for orbits of any eccentricity.

The EccDynamics folder contains a suite of functions for the dynamics in eccentric orbits, where 0 < e < 1.

3.2 Relative Dynamics in Circular Orbits

The dynamics that govern the relative motion in circular orbits are described by the Clohessy-Wiltshire equations, or
Hill’s equations. The following functions apply Hill’s equations in different ways to model the relative dynamics:

HillsEqns Closed-form solution to the unforced Hills equations.

RelativeOrbitRHS Computes the state derivative using a continuous-time linear model of Hills equations

DiscreteHills Computes the state trajectory using a discrete-time dynamic model of Hills equations, given the
initial state and time-history of applied accelerations.

In addition, the function FFIntegrate allows you to specify two initial states in the ECI frame, a time vector, and
a set of applied accelerations in the Hills frame. The function then integrates the equations of motion in the inertial
frame over the specified time vector.

The function HillsEqns gives a closed-form solution for the relative position and velocity at a future time, given
the initial position and velocity, and the orbit rate.

13

3.2. RELATIVE DYNAMICS IN CIRCULAR ORBITS CHAPTER 3. RELATIVE ORBIT DYNAMICS

Example 3.1 shows a short script that simulates 1 orbit, along with a plot of the trajectory.

Example 3.1 Example Trajectory Found with HillsEqns.m

1 % orbit rate (rad/s)
2 n = .001;
3

4 % time vector
5 t = linspace(0,2*pi/n,100);
6

7 % initial state
8 xH0 = [1;0;1;0;-2*n;0];
9

10 % state trajectory over time t
11 xH = HillsEqns(xH0, n, t, 1);
12

13 % plot
14 HillsFramePlot(xH)

−2

−1

0

1

2

7 8 9 10 11 12 13

−2

0

2

 y [km]
Along−Track

z [km]
Cross−
Track

 x [km]
Radial

We first define the orbit rate and a time vector that spans one orbit. We then define the initial state, xH0. The initial x
position is 1 km, and the initial y velocity is −.002 km/s. This results in T-periodic motion. The fourth input provided
to HillsEqns.m is a flag, where 1 gives the output as a 6 × 1 vector, and the 2 gives the output as a data structure
with fields for position, velocity and time.

The function RelativeOrbitRHS can be used as the right-hand-side equation in a numerical integration routine.

Example 3.2 shows a short script that simulates 3 orbits, along with a plot of the trajectory. Notice the initial y velocity
is changed slightly from the previous amount, resulting in along-track drift. Also, notice that the applied acceleration is
an input. Here, we simply set it to zero. However, this can be used to model both disturbance and control accelerations.

Example 3.2 Example Simulation Using RelativeOrbitRHS

1 % initial state
2 n = .001;
3 xH0 = [1;0;1;0;-2.1*n;n/2];
4

5 % applied acceleration
6 u = [0;0;0];
7

8 % simulation
9 T = 2*pi/n;

10 nOrb = 2;
11 t = 0;
12 k = 0;
13 dT = 2;
14 xHs = xH0;
15 while(t< nOrb*T),
16 k=k+1;
17 t=t+dT;
18 xHs(:,k+1) = ...
19 RK4(’RelativeOrbitRHS’, ...
20 xHs(:,k), dT, t, n, u);
21 end
22

23 % plot
24 HillsFramePlot(xHs)

−3

−2

−1

0

1

2

−2
0

2
4

6
8

−2
0

2

 y [km]
Along−Track

z [km]
Cross−
Track

 x [km]
Radial

14

CHAPTER 3. RELATIVE ORBIT DYNAMICS 3.3. RELATIVE DYNAMICS IN ECCENTRIC ORBITS

The function DiscreteHills provides a discrete-time model of the relative dynamics. Given an initial state and a
time-history of applied accelerations (spaced at a constant time interval), this function will return the forced relative
trajectory.

3.3 Relative Dynamics in Eccentric Orbits

The equations for relative motion in eccentric orbits can be expressed in a number of different ways. The Formation
Flying module implements Lawden’s equations, which use the true anomaly as the independent variable. These
equations are valid for an eccentricity range of 0 < e < 1. In particular, we follow the formula presented by Inalhan
et.al. (AIAA JGCD v.25 no.1, 2002) for the numerical implementation of the state transition matrix.

Another formulation, presented by Yamanaka and Ankersen in the same journal, uses an alternative approach that
avoids the singularity at e = 0. This formulation may be added in a future version of this module.

A summary of the main functions for relative dynamic modeling in eccentric orbits is provided below. Note that
functions beginning with the FFEcc prefix are valid only for eccentric orbits (0 < e < 1).

FFEccIntConst Computes a set of integration constants given the initial Hills frame state, eccentricity, and true
anomaly.

FFEccProp Computes Hills frame state at future true anomalies given integration constants and eccentricity.

FFEccLawdensEqns Computes a set of future Hills frame states given the initial Hills frame state, eccentricity,
and true anomaly.

FFEccLinOrb Computes the state space matrices for linearized motion about a given Hills frame state at a given
true anomaly.

FFEccDiscreteHills Similar to the circular orbit version, DiscreteHills. Uses FFEccLinOrb to com-
pute continuous time system, then discretizes with a zero-order hold.

GVEDynamics Computes the state space matrices for linearized motion about a given differential element vector,
using Gauss’s variational equations.

DisreteGVE Similar to FFEccDiscreteHills, but based the motion is defined in terms of orbital element
differences.

The function GVEDynamics is valid for both circular and eccentric orbits. It models the continuous-time relative
dynamics for Gauss’ variational equations. Provided the orbital elements, it returns the state space matrices A,B that
satisfy the equation:

δ̇e = Aδe +Bu

where δe is the orbital element difference vector, and u is the applied acceleration in Hills frame coordinates.

For the functions that utilize integration constants, the velocity terms of the Hills frame state are expressed as deriva-
tives with respect to the true anomaly, rather than time. We refer to this as the “nu-domain” versus the time-domain,
to distinguish derivatives taken with respect to true anomaly (ν, “nu”). When relative states are defined in this way, it
is stated explicitly in the file’s help header.

The usage for Lawden’s equations is:

>> xH = FFEccLawdensEqns(xH0, nu0, nu, e, n);

In this function, the Hill’s frame state input, xH0, can be expressed either in the time-domain or the “nu-domain”. The
output is then provided in the same domain as the input.

To see the accuracy of Lawden’s equations, run the function FFEccFrameCompare. The usage is:

15

3.3. RELATIVE DYNAMICS IN ECCENTRIC ORBITS CHAPTER 3. RELATIVE ORBIT DYNAMICS

>> [xH1,xH2] = FFEccFrameCompare(elRef0, xH0, nOrbits, nS, method);

This function compares 2 methods of computing the relative motion in an eccentric orbit. The first case uses the
homogenous linear time-varying (LTV) solution to Lawden’s equations, as implemented in FFEccLawdensEqns.
The second case computes the absolute trajectories of both orbits in the ECI frame, then transforms the resulting
trajectories into the relative Hill’s frame.

Type “help FFEccFrameCompare” for more information on how to use the function. Calling the function with no
inputs and no outputs will cause it to run with a set of default inputs, and will produce the following 2 plots: The first

Figure 3.1. Results from FFEccFrameCompare Demo

0 2 4 6 8

x 10
4

−1000

0

1000

x

0 2 4 6 8

x 10
4

−2000

0

2000

y

0 2 4 6 8

x 10
4

−5

0

5
x 10

−9

z

Time [sec]

0 2 4 6 8

x 10
4

−0.5

0

0.5

dx

0 2 4 6 8

x 10
4

−2

0

2

dy

0 2 4 6 8

x 10
4

−2

0

2
x 10

−12

dz

Time [sec]
−1500 −1000 −500 0 500 1000 1500

−800

−600

−400

−200

0

200

400

600

800

y [m]

x [m]

absolute
relative

column on the far left shows the x, y, z position in Hills frame. In this case there is only in-plane motion so z = 0. The
adjacent column of plots show the nu-domain velocities. The in-plane trajectory is shown on the right. The plots show
that there is good agreement between Lawden’s predicted motion (red) and the “true” motion found from integration
in the inertial frame.

This plot shows the simulation of 2 orbits. This is clearly a T-periodic trajectory (repeats once each orbit). You can use
the function FFEccDMatPeriodic to help determine the initial conditions for T-periodic trajectories in eccentric
orbits.

As an example, refer to the steps outlined in Example 3.3 on the next page. The eccentricity in this case is 0.1. The top
plot shows the trajectory that results from using the same initial Hill’s-frame state that was used for the circular orbit
motion of the previous examples. With the non-zero eccentricity, this state clearly results in a non-repeating trajectory
(it has secular drift in the along-track direction). The example shows how the FFEccDMatPeriodic function can
be used to compute the initial conditions necessary for periodic motion. The lower plot shows the resulting periodic
motion after changing the initial state.

16

CHAPTER 3. RELATIVE ORBIT DYNAMICS 3.3. RELATIVE DYNAMICS IN ECCENTRIC ORBITS

Example 3.3 Example of Periodic Motion and Lawden’s Equations

1 % Mean orbit rate and eccentricity
2 n = .001;
3 e = 0.1;
4

5 % Initial and future true anomaly
6 nu0 = 0;
7 nu = 0:.01:2*pi;
8

9 % Initial Hills-frame state
10 xH0 = [1;...
11 0;...
12 1;...
13 0;...
14 -2*n;...
15 0];
16

17 % Use Lawden’s equations to predict relative
motion

18 xH = FFEccLawdensEqns(xH0, nu0, nu, e, n);
19 HillsFramePlot(xH)
20

21 % Compute integration constants for periodic
motion

22 [D, dx, dy] = FFEccDMatPeriodic(xH0, nu0, e,
1);

23

24 % Redefine initial Hills state
25 nuDot = NuDot(n, e, nu0);
26 xH0(4) = dx*nuDot;
27 xH0(5) = dy*nuDot;
28

29 % Compute trajectory again with new initial
state

30 xH2 = FFEccLawdensEqns(xH0, nu0, nu, e, n);
31 HillsFramePlot(xH2)

−1

0

1

2

3

−8
−6

−4
−2

0

−2

0

2

 y [km]
Along−Track

z [km]
Cross−
Track

 x [km]
Radial

−2

−1

0

1

2

3

−4
−2

0
2

4

−2

0

2

 y [km]
Along−Track

z [km]
Cross−
Track

 x [km]
Radial

17

3.3. RELATIVE DYNAMICS IN ECCENTRIC ORBITS CHAPTER 3. RELATIVE ORBIT DYNAMICS

18

CHAPTER 4

FORMATION DESIGN

This chapter describes the Formation Design GUI and provides examples of how it can be used to design formations
for circular and eccentric orbits.

4.1 Introduction

The Formation Design GUI is a graphical tool that allows you to quickly design and view periodic spacecraft forma-
tions. It can be used for both circular and eccentric orbits.

Before describing the tool, it is helpful to define some terms that will be used throughout this chapter.

Cluster A group of close-orbiting satellites. Does not imply an organizational structure. A cluster can consist of one
or more stand-alone satellites and/or one or more teams.

Team A group of satellites with one member serving as the reference.

Reference The satellite in a team that defines the origin of the relative frame.

Relative Two meanings. Describes the motion of a satellite with respect to its reference. Also denotes any team-
member that is not the team’s reference.

Hierarchy Organizational structure to accommodate multiple teams. Any of the relative members of a team may
serve as the reference of a lower level team.

Cluster Reference The reference of the top level team.

The Formation Design GUI will enable you to visually design both the formation geometry and the hierarchical team
organization of your cluster.

4.2 The Formation Design GUI: An Overview

To open the Formation Design GUI, type:

>> FormationDesignGUI

19

4.2. THE FORMATION DESIGN GUI: AN OVERVIEW CHAPTER 4. FORMATION DESIGN

Figure 4.1. Formation Design GUI

Figure 4.1 shows the two windows that will appear when you open the GUI.

The window on the left is the control window. Use this window to define the reference orbit, create one or more teams
of satellites, and design their formation geometry.

The window on the right is the trajectory display. This window displays and animates the 3D trajectory of the satel-
lite(s) you have selected. You can display the trajectory of individual satellites, an entire team, or the entire cluster.

The control window consists of 6 separate panels. The set of reference orbital elements is defined using the Orbit Data
panel. You have the choice of using the mean anomaly or true anomaly in the element set, and any of the elements can
be changed at any time. Satellites may be added to or removed from the cluster via the Satellite panel. Each satellite
has a unique ID number, and a formation geometry that defines its relative trajectory. The geometric parameters of
each satellite are specified in the Geometry panel. They may defined with respect to the cluster reference, or with
respect to the captain if the satellite is on a team.

Teams may be created or deleted using the “Team Structure” panel. The name and member IDs of each team are shown
here in the form of a hierarchical list. Satellites may be assigned to or removed from teams individually. Various logic
constraints are imposed by the GUI to ensure that the overall team organization chosen by the user is feasible.

The relative state corresponding to the desired geometry is shown in the Relative State panel. You may choose to
view the state in one of two frames – as orbital element differences, or as position and velocity in the curvilinear
Hill’s frame. The current state corresponds to the mean or true anomaly specified in the Orbit Data panel. The entire
trajectory over a full orbit period (the trajectory is T-periodic) can be seen in the 3-D plotting axes located in the right
half portion of the GUI. Using the Display panel, you may change the manner in which the trajectory is shown.

At any given time, one satellite is selected within the GUI. The selection may be changed from the Satellite panel.
Within the Display panel, you may choose which trajectories to plot – the currently selected satellite, the entire team
that this satellite is on, or the entire cluster (the trajectory of the selected satellite is always shown with a thicker line

20

CHAPTER 4. FORMATION DESIGN 4.3. HOW TO USE THE FORMATION DESIGN GUI

than the rest). In addition, the origin of the relative frame may be chosen as either the cluster reference or the team
reference. The axes may be freely rotated to help visualize the formation geometry. Four buttons are provided in the
Display panel which allow you to snap the axes to a particular frame. For example, the y-x frame has the along-track
direction aligned to the right, and the radial direction aligned upward. Finally, the “Animate” button may be pushed to
create an animation of all the displayed satellites traversing one cycle of their trajectory.

4.3 How to Use The Formation Design GUI

To open the Formation Design GUI, type:

>> FormationDesignGUI

4.3.1 Defining the Reference Orbit

The first step in designing a formation is to define the reference orbit. In the Orbit Data panel, you may specify the 6
elements of your reference orbit. You also have the option to use the mean anomaly or true anomaly.

NOTE: The choice of mean anomaly or true anomaly does not affect the shape of your trajectories. It only changes
the location on the trajectory that the satellite occupies.

4.3.2 Adding a Satellite

To add a satellite, click the Add button in the Satellite panel. Choose an ID number for this satellite and press OK.

If you add a satellite before supplying the reference orbital elements, you will get the warning message that says:
“Formation trajectories cannot be displayed until all orbital elements are specified.”. In this case, you should define
the orbital elements before proceeding further.

When a new satellite is added to your cluster, it is not assigned to any team. It is also given an initial geometry of zero.
In other words, its default trajectory is a point fixed at the origin of the cluster reference frame.

4.3.3 Saving and Loading Formation Design Files

Once you are happy with a formation design, you can save the data to a file. Select Data -¿ Save from the menu bar at
the top of the GUI. You will be prompted to select a name and directory to save the file. Note that a default file ending
of .fd.mat is provided. The Formation Design GUI uses this file ending to distinguish formation design (fd) mat-files
from other mat-files.

Once saved, the file can then be loaded into the GUI at a later time for continued work. To load a file, simply go to
Data→ Load via the menu bar, and select the desired .fd.mat file. These files can also be loaded at the beginning of a
simulation, to define a team organization as well as the desired geometric goals.

To help illustrate the functionality of the tool, the remainder of this section will refer to a formation design provided
with the toolbox. The name of the file is: CascadingTetrahedron.fd.mat.

Load this file now. It is located in the folder FormationFlying/Visual. This cluster consists of eight satellites, orga-
nized into 2 teams. One team forms a regular tetrahedron at apogee. The other forms a hexahedron at apogee.

21

4.3. HOW TO USE THE FORMATION DESIGN GUI CHAPTER 4. FORMATION DESIGN

4.3.4 Selecting a Satellite

The properties of satellites are displayed and edited one-at-a-time. The currently selected satellite is shown in the
pull-down menu at the top of the Satellite panel. Use this pull-down menu to select a different satellite from the list at
any time.

4.3.5 Creating a Team

To create a new team, click the Create in the Team Structure panel. You will be prompted to select a satellite to be
the reference for this team. Therefore, you must first have at least one satellite in your cluster before creating a team.
After you’ve selected a reference satellite, you will then be prompted to enter a name for this team.

NOTE: It is not necessary to create any kind of team organization in order to design a formation. The team organization
is completely independent of the formation geometry.

4.3.6 Defining the Relative Geometry

Formations are designed by defining the geometric shape of individual trajectories. Use the Geometry panel to define
the relative orbit geometry of the currently selected satellite (see Section 4.3.4).

The Formation Design GUI operates in 2 different modes: circular and eccentric. The 5 fields shown in the Geometry
panel will correspond either to a circular or eccentric geometry, depending on which mode the GUI is in. The mode
may be toggled by selecting the Mode menu option at the top of the GUI.

Circular geometries are defined with the following parameters, shown in Table 4.1:

Table 4.1. Geometric Parameters for Circular Orbits

Parameter Description
y0 Along-track offset of the center of the in-plane motion
aE Semi-major axis of relative 2x1 in-plane ellipse
beta Phase angle on ellipse (measured positive clockwise from nadir axis to velocity vector) when the

satellite is at the ascending node
zInc Cross-track amplitude due to inclination (Inc) difference
zLan Cross-track amplitude due to longitude of ascending node (Lan) difference

Eccentric geometries are defined with the following parameters, shown in Table 4.2:

Table 4.2. Geometric Parameters for Eccentric Orbits

Parameter Description
y0 Along-track offset of the center of the in-plane motion
aE Maximum radial amplitude
beta True anomaly where maximum (positive) radial amplitude occurs
zInc Maximum (positive) cross-track amplitude
zLan True anomaly where maximum (positive) cross-track amplitude occurs

For low eccentricities (e < 0.001), you may safely toggle between the eccentric and circular modes. For higher values
of eccentricity, however, you will find a noticeable “warping” from the original periodic trajectories. This is the result
of making circular orbit assumptions in a non-circular orbit.

22

CHAPTER 4. FORMATION DESIGN 4.3. HOW TO USE THE FORMATION DESIGN GUI

When defining the geometry, it is important to specify the reference frame. You have 2 choices for the reference frame:
Team or Cluster. There is only one Cluster frame, common to all satellites in the cluster. If the satellite is not a relative
member of a team, then the Team reference frame is not allowed; you must use the Cluster frame. The origin of the
Team frame is just the reference satellite for that team.

Changing the reference frame between Team and Cluster does not change the geometric parameters that you have
defined. Instead, it only changes the location of the trajectory in space.

4.3.7 Viewing Relative State Data

The relative state associated with your formation geometry is shown in the Relative State panel. You can use the
pull-down menu to toggle between orbital elements and Hills-frame coordinates.

4.3.8 Viewing the Team Organization

Once you have defined a team organization, you can view a graphic illustration of the hierarchy. Simply press the View
button, located in the Team Structure panel.

With the cascading tetrahedron formation loaded, pressing the View button will bring up a new figure that shows the
hierarchy of the 2 teams, as shown in Figure 4.2.

Figure 4.2. Team Organization for Cascading Tetrahedron Example

1
3 2 4Tetra

3
5 6 7 8Hexa

Level
1

Level
2

Satellite #1 is the reference for the top-level team. This makes it the cluster reference. The name of the top-level team
is “Tetra”. It consists of four satellites that form a tetrahedron at apogee. Satellite #3 is one of the relative members
on team “Tetra”. It is also the reference for the lower-level team, “Hexa”. This team consists of 5 satellites that form
a hexahedron at apogee.

4.3.9 Viewing Relative Trajectories

The Display panel provides several options for displaying the relative trajectories of your formation. The 3 radio
buttons enable you to plot: a) the selected satellite, b) all of the satellites on the selected satellite’s team, or c) all of
the satellites in the cluster.

The trajectories can be shown in the Cluster frame or the Team frame. Change the frame by using the pull-down menu
at the bottom of the Display panel.

Use the mouse to rotate the 3D plot, so that you can see the trajectories from different perspectives. Use the buttons
x-y , x-z , y-x , and y-z to snap to a particular 2D perspective. Press the Animate button to see the satellites

23

4.3. HOW TO USE THE FORMATION DESIGN GUI CHAPTER 4. FORMATION DESIGN

traverse their trajectories. The true anomaly value in the top-right corner of the display window will change during the
animation.

Figure 4.3 shows the trajectories for the first team (“Tetra”) of the Cascading Tetrahedron formation.

Figure 4.3. Trajectories for the Cascading Tetrahedron Formation

4.3.10 Finding the Minimum Distance

Clicking the Min Dist menu button will cause the minimum distance between between all pairs of trajectories to be
computed and displayed at the command line.

The minimum distance display for the trajectories displayed in Figure 4.3 is shown below as an example.

Listing. Minimum Distance Display

1 Sat 1 is 3.027728 km from Sat 2 at 230.640669 degrees.
2 Sat 2 is 3.027728 km from Sat 1 at 230.640669 degrees.
3 Sat 3 is 2.277193 km from Sat 7 at 293.816156 degrees.
4 Sat 4 is 4.245492 km from Sat 2 at 308.857939 degrees.
5 Sat 5 is 5.288965 km from Sat 6 at 159.442897 degrees.
6 Sat 6 is 5.288965 km from Sat 5 at 159.442897 degrees.
7 Sat 7 is 2.277193 km from Sat 3 at 293.816156 degrees.
8 Sat 8 is 5.307482 km from Sat 6 at 107.298050 degrees.
9 ==

10 Global minimum: Sats 3 and 7 at 2.277193 km
11 ==

24

CHAPTER 5

GUIDANCE AND CONTROL

This chapter describes the functions for formation flying guidance and control.

5.1 Guidance Functions

5.1.1 Formation Flying Guidance

In aerospace control systems, the role of a guidance algorithm is to determine the desired trajectory to be followed.
For spacecraft formation flying in circular and eccentric orbits, the objective is to reach a relative orbit state that lies
on a naturally repeating trajectory, so that the formation may be maintained over long periods of time with minimal
control effort.

Therefore, in this module, the guidance objective is to determine the optimal target state (or trajectory) for the individ-
ual spacecraft to attain, such that the individual trajectories combine to give the desired formation. The target states
always lie on a naturally repeating (or T-periodic) trajectory. The optimality condition is, in general, a combination
of the following objectives: minimize time, minimize total fuel consumption, promote equal fuel consumption among
spacecraft. The task is therefore to solve an assignment problem.

The task of formation guidance is carried out with a team of spacecraft. The concept of team organizations is discussed
in Chapter 4. In general, a team of spacecraft has one team member that serves as the reference, which defines the
origin of the relative frame for all other members, which are termed “relatives”. In addition, one spacecraft serves
as the captain. The captain’s role is to implement certain algorithms for decisions that must be made in a centralized
manner.

The formation guidance algorithms provided in this module are designed to be used in a distributed fashion. The cost
estimation is distributed across all satellites in the team, but the final assignment task is performed centrally, by the
captain. The general procedure is as follows:

1. The geometric goals for the team are either supplied to or computed by the team captain.

2. The captain distributes the team goals to all relative team members.

3. Each recipient uses the control law to estimate the cost to achieve all desired trajectories.

4. The vector of costs from each relative member is returned to the captain.

5. The captain assembles all cost vectors into a single cost matrix.

25

5.1. GUIDANCE FUNCTIONS CHAPTER 5. GUIDANCE AND CONTROL

6. The captain applies an assignment algorithm to the cost matrix to find a solution that minimizes the total cost.

7. The captain sends out the newly assigned geometric goals to each relative team member.

These steps are implemented in the DFFSim function. A simpler and more direct demonstration of the steps can also
be seen in the AssignmentDemo script. The first step in the process is to compute the team goals. This is discussed
in the next section.

5.1.2 Team Goals

The desired formation geometry is expressed as a teamGoals data structure. To see the contents of a teamGoals
data structure, type:

>> tG = TeamGoals_Structure
tG =

nU: 1
teamID: 1

geometry: [1x1 struct]
constraints: [1x1 struct]

dPhi: 0.0872664625997165

An analogous structure exists for eccentric geometries. The field nU specifies the number of unique target states.
We make the distinction of “unique” because some target states can be defined as duplicates of a unique target state,
with only a phase difference. The teamID simply provides a unique identifier for the team. The geometry and
constraints fields are additional data structures. These fields will hold an array of nU data structures. The field
dPhi specifies the angular resolution to use in a discretized search for the optimal solution.

The geometry field is just a circular geometry data structure:

>> tG.geometry
ans =

y0: 0
aE: 0

beta: 0
zInc: 0
zLan: 0

The constraints data structure is described in Table 5.1.

Table 5.1. Constraints Data Structure

Field Name Data Description
variable int Flag indicating whether the associated geomtric goals are fixed (0) or variable

(1)
nRestrict int Number of members to restrict assignments to
restrictID int[nRestrict] Array of member IDs to restrict assignments to
nDuplicates int Number of duplicate states
phase double[nDuplicate]Phase offset of each duplicated state (rad)

A variable state is one that can be freely rotated around the closed trajectory. The only restriction on a variable state
is that it must have a specified relative phase angle to the other variable states. A variable state can have duplicates,
where the duplicate states lie on the same trajectory as the original, but at some phase offset.

Whether a target state is fixed or variable, we can choose to restrict its assignment to a subset of spacecraft. This can
be done by listing those spacecraft IDs in the restrictID field. If the field is left empty, then no restrictions are
made and the target state can be assigned to any spacecraft.

26

CHAPTER 5. GUIDANCE AND CONTROL 5.1. GUIDANCE FUNCTIONS

To see an example of teamGoals, call the GenerateTeamGoals function. The usage is:

>> teamGoals = GenerateTeamGoals(el0, fType, fSize, nRels, teamID, angRes);

This function supports a set of 10 different formation types. Calling the function by itself will produce a demo. It will
first print the list of formation types that it supports, then run an animation of one of those formations.

>> GenerateTeamGoals;

The following formation types are available:
===
CASE 1: equally spaced leader follower
CASE 2: equally spaced leader follower with out-of-plane component for repeated

ground-track
CASE 3: equally phased centered in-plane elliptical (ref. at center)
CASE 4: equally phased centered in-plane elliptical
CASE 5: equally phased positive projected circle (ref. at center)
CASE 6: equally phased positive projected circle
CASE 7: equally phased negative projected circle (ref. at center)
CASE 8: equally phased negative projected circle
CASE 9: equally phased positve and negative projected circles (ref. at center)
CASE 10: equally phased positve and negative projected circles
===

The built-in demo produces a teamGoals data structure for CASE 10, with 5 relatives and a 1 km radius for the
projected circles. Once the teamGoals structure is generated, the geometric goals are extracted and the formation is
animated. The same demo can be reproduced with the following commands:

>> el0 = [8000, pi/4, 0, 0, 0, 0];
>> tG = GenerateTeamGoals(el0, 10, 1, 5, 99, 5*pi/180);
>> g = TeamGoals2Geom(tG, offset);
>> sc = ViewRelativeMotion(el0, g, 1);

The ViewRelativeMotion function generates an animation of the formation, as shown in Figure 5.1 on the
following page.

Another useful way to visualize the formation is to use the function ViewFormation. This function requires two
inputs: the reference orbital elements and a geometry data structure. We can pass it the array of geometry data
structures g and it will show the formation created by all of the trajectories.

>> ViewFormation(el0, g);

Examination of the tG data structure shows that there are 4 unique target states, and that one of the target states (the sec-
ond in the array) is duplicated. This adds up to the 5 relative states that we specified when calling GenerateTeamGoals.

>> tG.nU
ans =

4
>> tG.constraints.nDuplicates
ans =

0
ans =

1
ans =

0
ans =

0

If you look closely at the formation shown in Figure 5.2 on the next page, you will see only four separate trajectories,
even though we plotted 5. This is because two of the trajectories have an identical path through space. The only

27

5.1. GUIDANCE FUNCTIONS CHAPTER 5. GUIDANCE AND CONTROL

Figure 5.1. Case 10 Formation Shown in Animation GUI

Figure 5.2. Case 10 Formation Shown with ViewFormation

−2

0

2

−2
−1

0
1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

XY

Z

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1 0 1 2
Y

X

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

X

Z

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Y

Z

28

CHAPTER 5. GUIDANCE AND CONTROL 5.1. GUIDANCE FUNCTIONS

difference is in the initial states, which are separated by a phase offset. To see a plot of just the 2 identical trajectories,
type:

>> ViewFormation(el0, g(2:3));

or to see an animation:

>> ViewRelativeMotion(el0, g(2:3));

In addition, the function IsDuplicateState can be used to determine whether two geometric parameter sets are
duplicates (lie on the same trajectory) or not.

>> IsDuplicateState(g(1), g(2))
ans =

0
>> IsDuplicateState(g(2), g(3))
ans =

1
>> IsDuplicateState(g(3), g(4))
ans =

0
>> IsDuplicateState(g(4), g(5))
ans =

0

5.1.3 Cost Estimation

Within the distributed guidance scheme, the captain transmits the teamGoals data to all relative members of the
team. Each member then computes an estimate of the costs to reach the set of target states that are defined in
teamGoals. To perform this cost estimate, the function EstimateCost is used. The usage is:

costEstimate = EstimateCost(el0, dEl, teamGoals, memID, window, weight);

where el0 is the reference element set, dEl is the current relative state expressed as element differences, and memID
is the unique member ID of the spacecraft executing the function. The input window is a time window data structure,
that specifies the minimum and maximum duration of the maneuver, and the earliest time the maneuver can begin.
The weight input is a scalar weight to be applied in computing the weighted cost for this spacecraft to achieve the
target states. The total cost for the i

th
spacecraft to reach the j

th
target state is:

cij = ∆vijwi

where ∆vij is an estimate of the total required delta-v, and wi is weight. This weight can be defined a number of
different ways. To promote a blend of fuel equalization and fuel minimization, the following weight is used:

wi = f−x
i

where fi is the remaining fuel percentage of the i
th

spacecraft, and x ≥ 0 is an adjustable parameter indicating the
importance of fuel equalization.

The following lines give an example of how to compute the cost estimate:

>> el0 = [8000, 0, pi/4, 0, 0, 0];
>> dEl0 = zeros(1,6);
>> tG = GenerateTeamGoals(el0, 5, 1, 5, 99, 5*pi/180);
>> window = Window_Structure; % use the default window structure
>> costEstimate = EstimateCost(el0, dEl0, tG, 3, window, 1)
costEstimate =

nU: 1
memID: 3

29

5.1. GUIDANCE FUNCTIONS CHAPTER 5. GUIDANCE AND CONTROL

targetIndex: 1
costLength: 72

cost: [72x1 double]

For simplicity, we just use a zero relative state here (fixed at the origin). In this example, we specify a formation type
of 5, which is a positive plane projected circle. This formation type has only one unique state. The other four states
are duplicate trajectories with only a phase offset. The cost estimate for reaching this trajectory is computed over a
resolution of 5 degree increments across the full phase range of the trajectory, from 0 to 360 degrees, which results in
an array of 72 costs. The increment of 5 degrees is specified in the tG.dPhi field (given as 5*pi/180 rad).

Because the initial state is fixed, we find that the cost estimate across all 72 points is the same. Now let’s compute the
cost estimate again but with a different initial state.

>> dEl0 = [0, 1e-4, 0, 0, 1e-4, -1e-4];
>> costEstimate2 = EstimateCost(el0, dEl0, tG, 3, window, 1);

Finally, let’s compute the cost estimate with an initial state that lies on the desired trajectory. This is done by converting
the geometric goals to a set of element differences. We arbitrarily choose the 3

rd
set of geometric parameters, which

corresponds to the 2
nd

duplicated state.

>> g = TeamGoals2Geom(tG);
>> dEl0 = Geom2DeltaElem(el0, g(3));
>> costEstimate3 = EstimateCost(el0, dEl0, tG, 3, window, 1);

A plot of the the three cost estimates vs. phase is shown in Figure 5.3. Each of the lines shows the cost to go from
an initial trajectory to the final trajectory. The phase angle defines the point on the final trajectory that is reached at a
specific point in time. The solid blue line shows the cost to go from the fixed state to the projected circle trajectory.

Figure 5.3. Comparison of Cost Estimates Using Different Initial Trajectories

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5
x 10

−3

Phase [deg]

C
os

t (
T

ot
al

 D
el

ta
−

V
)

[k
m

/s
]

Initial State: Fixed
Initial State: Variable
Initial State: ON TARGET TRAJECTORY

This cost here is independent of phase, because we can reach any phase on the target trajectory by simply leaving the
initial state at a different time. The resulting optimal transfer trajectory is always the same, because we are always
leaving from the same initial state and reaching the same final state. The only difference is the time at which we leave
and then reach the final state.

The dashed green line shows the cost to go from an arbitrary initial trajectory (that varies with time) to the desired
projected circle trajectory. This cost varies with the phase angle of the final trajectory. In other words, it is easier to
reach certain phases on the desired trajectory than others.

The dashed red line shows the cost to go from an initial trajectory back to the same trajectory, but at a different phase
angle. Clearly, we can find one phase angle where no maneuver is required. This plot reaches a minimum of 0 delta-v

30

CHAPTER 5. GUIDANCE AND CONTROL 5.1. GUIDANCE FUNCTIONS

at about 145 deg phase. Recall that the second duplicated state was chosen as the set of geometric parameters to define
the initial trajectory. Examine the phase angles of these duplicates:

>> tG.constraints.phase*180/pi
ans =

72 144 -144 -72

The second duplicated state has a 144 degree phase angle offset. This confirms the location of the minimum delta-v
that we see in the plot.

This example has involved only 1 unique variable target state. Therefore, the cost vector in the costEstimate data
structure has only Q = 360/5 = 72 elements. In general, the length of the cost vector is defined as:

M + PuQ

where Q is the number of discrete points used for each variable target state, Pu is the number of unique variable target
states, and M is the number of fixed target states. To quickly define M , Pu and Q for any set of team goals, use the
SetupAssignmentProblem function.

>> [N,M,P,Pu,Q,phi,u] = SetupAssignmentProblem(teamGoals);

Consult the help header for more information the outputs of this function.

Recall also that any unique target state can optionally be restricted to a subset of member IDs. If the member computing
the cost estimate is not in the subset of restricted IDs for a target state, it does not compute the delta-v to achieve that
state. Instead, it inserts a high cost (1e9) for the portion of the cost vector associated with that state. This will then
cause the assignment algorithm to naturally avoid assigning these states to this satellite in the assignment algorithm.

5.1.4 Assignment

Once a team member has computed its cost vector, it transmits the data back to the captain. Once the captain has
received all of the cost data, it compiles the vectors into a cost matrix and then uses an assignment algorithm to assign
the target states.

The cost matrix is initialized with the InitializeCostMatrix function. This returns a 2D matrix f of the proper
size containing zeros.

>> f = InitializeCostMatrix(teamGoals, nRelatives);

The cost matrix is then filled with the relative satellite’s cost vectors using the PopulateCostMatrix function.

>> [f,col] = PopulateCostMatrix(f, costEstimate, teamGoals, relativeIDs);

This function is called repeatedly, with different inputs for costEstimate. The costEstimate input is just the
cost estimate data structure for each satellite. The relativeIDs input is a vector of the relative satellites’ unique
ID numbers. The col output indicates which column of the matrix where the satellite’s cost data was inserted.

Once the cost matrix f has been fully populated, it can be input to an assignment algorithm. The Formation Flying
Module provides two different assignment algorithms: privileged and optimal. The optimal method involves searching
over all possible permutations to find the one with the minimum total cost. The total number of unique permutations is
N ! for a square cost matrix of size N . This approach is therefore computationally cumbersome as N becomes large,
i.e., ≥ 8. The advantage is that a globally optimal solution is guaranteed.

The privileged method requires considerably less computation, but does not guarantee that a globally optimum solution
is found. It consists of the following steps:

1. Determine the minimum projected cost of each satellite.

2. Determine which satellite has the highest minimum cost.

31

5.2. CONTROL FUNCTIONS CHAPTER 5. GUIDANCE AND CONTROL

3. Assign that satellite to the target state corresponding to its minimum cost.

4. Repeat steps 1-2 for all remaining members and remaining target states.

The usage is the same for each function.

>> [optOrder, optPhi, optCost] = OptimalAssignment(N, P, Pu, Q, f, phi, u);
>> [optOrder, optPhi, optCost] = PrivilegedAssignment(N, P, Pu, Q, f, phi, u);

The inputs N,P,Pu,Q,phi,u can be obtained directly from the SetupAssignmentProblem function. The
other input is f, the cost matrix.

The outputs of the assignment algorithms are described below:

Outputs

optOrder (1,N) Optimal order of the target states
optPhi (1,N) Optimal phases for variable states
optCost (1) Total cost to achieve the optimal configuration

The order of the target states corresponds directly with the order of the relativeIDs vector. This provides a
mapping of target states to relative satellite IDs. The output optPhi specifies the phase angle associated with any
variable target states. The output optCost is the total weighted cost

The optimal and privileged methods are compared in the AssignmentDemo script.

Most of the guidance functions discussed in this section can be used in either circular or eccentric orbits. The only ex-
ceptions are GenerateTeamGoals and EstimateCost. These functions are only valid for circular orbits. Sepa-
rate, analogous functions can be used for eccentric orbits: FFEccGenerateTeamGoals and FFEccEstimateCost.

5.2 Control Functions

5.2.1 Formation Flying Control

In formation flying, each spacecraft attempts to control its relative motion so that the overall desired formation geom-
etry is realized. There are, in general, two different modes of operation for formation control:

• Reconfiguration

• Formation Maintenance

“Reconfiguration” is process of maneuvering from one formation to another. This can include the initializing the
formation as well. “Formation Maintenance” is the ongoing task of maintaining the desired formation geometry. As
discussed in the previous section, the role of the guidance algorithms is to assign target states to satellites in a way
that minimizes some cost function. Once the target states have been assigned, the role of the control algorithms is to
achieve and maintain the desired trajectories.

Recall that the relative trajectories are derived from the disturbance-free equations of motion for relative orbit dy-
namics. As discussed in previous chapters, these trajectories are considered T-peiodic in that they repeat once each
orbit period. Therefore, once the desired T-periodic trajectory has been reached, in the absence of disturbances, the
satellites would be able to maintain the desired motion with no further control. However, the unavoidable presence
of navigation error and disturbing forces tend to pull the satellites away from the desired trajectory, which requires
ongoing formation maintenance maneuvers.

32

CHAPTER 5. GUIDANCE AND CONTROL 5.2. CONTROL FUNCTIONS

The Formation Flying Module provides a variety of relative orbit control methods. All of the methods are equally
capable of being used for both reconfiguration and formation maintenance purposes. The control functions are located
in two folders: Control and LP, where “LP” stands for Linear Programming. A diagram showing the organizational
structure of the various control methods is shown in Figure 5.4.

Figure 5.4. Organizational Structure of Control Methods

Control Methods

Model PredictiveStandard Feedback

IterativeImpulsiveManeuver.m

Closed-Form
Solution

Linear
Programming

Gauss Variational
Equations

Lawden's
Equations

Lyapunov.m LinOrbLQG.m

ImpulsiveManeuver.m ImpulsiveLPManeuver.m

LPCircularTimeWeight.m

Circular Orbits Eccentric Orbits

LPEccentricTimeWeight.m

LPEccentric.mLPEccentricGVE.m

Circular Orbits

OutOfPLane.m InPlane.m

OptimalInPlaneDeltaV.m Hills Equations

LPCircular.m

Simplex.mSimplex.mSimplex.m

The hierarchy of methods is split into 2 main branches: Standard Feedback Control, and Model Predictive Control
(MPC). The feedback control methods compute the current control force to be applied based upon the measured error
in the relative state. The MPC methods use the measured relative state and a target state (defined at some future time
horizon tH) to plan a series of impulsive delta-v’s over the time horizon.

As the diagram shows, most of the control functions fall under the category of MPC. MPC is the preferred control
approach for spacecraft orbit control for two main reasons: MPC methods can 1) find the fuel-optimal control solution
for a given time horizon, and 2) accommodate time-varying, non-linear constraints on the control. As every aerospace
engineer knows, orbit control requires the consumption of precious consumables 1. It is therefore critical to plan
formation flying maneuvers in a fuel optimal way. A maneuver in the relative frame is simply a small orbit transfer; it
is known that optimal orbit transfers consist of a series of impulsive delta-v’s applied at particular points in the orbit.
This is precisely the type of control solution produced by MPC methods.

5.2.2 Standard Feedback Control

Standard feedback control can be used in formation flying, but it should be used sparingly. It is most appropriate
for applying small corrections when the spacecraft is close to its target state. It could also be used as the primary
control method for highly agile spacecraft designs with short mission life or refueling capability. The feedback control

1Exceptions would include solar sailing for absolute orbit control, and the coordinated use of differential drag and electromagnetic forces
between spacecraft for relative orbit control.

33

5.2. CONTROL FUNCTIONS CHAPTER 5. GUIDANCE AND CONTROL

methods provided in the toolbox include an LQG controller and a Lyupunov-based controller. Other types of feedback
control techniques could also be used, such asH2,H∞, or µ-synthesis. In any case, the main design objectives should
be minimize the control effort and be robust to sensor noise.

The Lyapunov function takes the reference orbital elements as an input and computes a constant gain feedback
matrix K for that orbit. The matrix is applied as follows:

aH = K(xHD − xHM)

where aH is the control acceleration to be applied, xHD is the desired relative state (position and velocity) and xHM

is the measured relative state. All vectors are expressed in the Hills frame. This function is used in the DFFSim
simulation.

The other feedback method is LinOrbLQG. This function computes a linear quadratic controller and estimator, and
combines them into a single state space system. It is used in the demo LQGEccDemo, and within the control law
module (DFFControlLaw) in the full integrated simulation. The results of the demo are shown in Figure 5.5.
This demo involves an orbit with eccentricity of 0.3. The simulation lasts for 2 orbits, and involves an in-plane
reconfiguration that increases the radial oscillation from 100 to 250 meters. The controller is turned on a few minutes
into the simulation, and immediately maneuvers the spacecraft to the desired trajectory. Once the desired trajectory
is reached, essentially no control input is required to maintain it, as this simulation includes no noise or disturbances.
The periodic “bumps” in the relative position and velocity error plots are a result of the discrete time step of 10 seconds
used to implement the controller. The bumps occur at perigee when the motion is the fastest. A smaller sampling time
for the control greatly reduces the tracking error.

Figure 5.5. Results from LQGEccDemo

0 0.5 1 1.5 2
−0.02

−0.01

0

0.01

C
on

tr
ol

 [m
/s

2]

0 0.5 1 1.5 2
−200

−100

0

100

P
os

 E
rr

or
 [m

]

0 0.5 1 1.5 2
−500

0

500

1000

V
el

 E
rr

or
 [m

m
/s

]

Time [orbits]

5.2.3 Model Predictive Control

As the diagram in Figure 5.4 on the previous page shows, the model predictive control algorithms are divided into
2 main branches: 1) Closed Form Solution, and 2) Linear Programming. Both methods develop a maneuver plan that
consists of a sequence of impulsive delta-v’s. The closed-form solution is derived from Gauss’ variational equations
with a zero eccentricity assumption. The solution is fuel-optimal, but is valid only for circular orbits. In addition, the
closed-form solution can only plan maneuvers that last a whole number of orbit periods. The linear programming (LP)
methods can be used to plan fuel optimal maneuvers over an arbitrary time horizon; they are valid for both circular
and eccentric orbits; and they can accommodate time-varying constraints on the control input. In eccentric orbits,
the only option is to use the LP methods. For circular orbits, the LP methods are used if the maneuver duration is
constrained to be a fraction of an orbit period, or if there are time-varying constraints on the controls that would be

34

CHAPTER 5. GUIDANCE AND CONTROL 5.2. CONTROL FUNCTIONS

violated by the closed-form solution. The advantage of the closed-form solution is that it requires much less memory
and computational time than the LP methods.

The top-level MPC function is IterativeImpulsiveControl. It computes the delta-v sequence for a single
spacecraft, to maneuver from an initial state to a desired trajectory. As the diagram in Figure 5.4 on page 33 illustrates,
this top level function can be used for circular or eccentric orbits, and it can apply either LP methods or the closed-
form solution to plan the maneuver. The function is called repeatedly over time from within the DFFControlLaw
software module. It is used to plan an achievable maneuver that brings the satellite closer and closer to the desired
trajectory, until it is finally realized. It is also called from the DFFSim and CheckDeltaVs functions.

If the largest delta-v of the sequence exceeds the maximum limit, then the desired relative trajectory is iteratively
recomputed, bringing the desired state closer to the current state, until the largest delta-v in the maneuver is under the
maximum limit. A fixed thrust actuator is assumed when converting delta-v to burn duration. The maneuver planning
algorithms used by this function do not account for gravitational perturbations or disturbances.

The usage for the function is:

>> [maneuver, foundSoln, resetGoals] = IterativeImpulsiveManeuver(state, goals,
window, parameters);

The inputs are all data structures, which are defined in the appendix.

Typing IterativeImpulsiveManeuver at the command line will run a built-in demo of the function. The demo
involves a reconfiguration from a 2 km leader follower formation to a projected circle with a 1 km radius. The demo
produces the following plots: The bar plots shows the delta-v and weighted cost (increasing with time) associated

Figure 5.6. Demo of IterativeImpulsiveManeuver

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

Maneuver Duration [orbits]

Cost vs. Duration

Delta−V
Cost

−0.5

0

0.5

−1 −0.5 0 0.5 1 1.5 2
y

Delta−V = 1.562809 m/s

x

1 2 3 4 5
0

1

2

3

4

5

6

7

8
x 10

−5

Maneuver Duration [orbits]

Cost vs. Duration

Delta−V
Cost

0

5

10

x 10
−3

1.94 1.95 1.96 1.97 1.98 1.99 2
y

Delta−V = 0.034200 m/s

x

35

5.2. CONTROL FUNCTIONS CHAPTER 5. GUIDANCE AND CONTROL

with maneuvers that last 1-5 orbit periods.

The top two plots show the required delta-v and associated trajectory for the maneuver that reaches the desired tra-
jectory, the projected circle formation. This trajectory has a significant out of plane component, which requires a
relatively large out-plane delta-v. In this example, we have a thruster that can only provide 11.4 mN of thrust, and a
prescribed maximum burn duration of 10 minutes. The maximum delta-v is only 3.8E−05, which is much lower than
the cross-track delta-v required to achieve the projected circle. The IterativeImpulsiveManeuver function
therefore modifies the desired relative state, bringing it closer to the current relative state, such that the maximum
delta-v for the maneuver is within limits. The modified maneuver and associated delta-v are shown in the bottom two
plots. The delta-v has dropped by about 2 orders of magnitude, and as expected, the corresponding maneuver provides
only a fraction of the required change in relative state. The same type of “fractional maneuver” can be carried out
numerous times until the desired trajectory is reached.

5.2.4 Closed-Form Solution

The closed-form solution for relative orbit control is implemented in the ImpulsiveManeuver function. This
method is derived from Gauss’ variational equations and provides an exact solution for an impulsive delta-v sequence
given the reference orbit elements and the error in the orbital element differences. It was developed by PSS and Dr.
Terry Alfriend at Texas A&M for the Air Force’s TechSat 21 mission.

As discussed previously, this function is called from the IterativeImpulsiveManeuver function. It is also
used directly in the FFMaintenanceSim simulation, and in the DeltaVAnalysis utility.

The maneuver planned by this method can include up to 3 in-plane delta-v’s, and 1 out-of-plane delta-v. The in-plane
delta-v’s are spaced at an integer number of half-orbit periods. If the first in-plane burn occurs at time tB1, then the
second and third burns will occur at:

tB2 = tB1 +
1
2
MT

tB3 = tB1 +
1
2
NT

where M is an odd integer, N is an even integer, and N > M ≥ 1. The first in-plane delta-v and the out-of-plane
delta-v will occur at specific points in the orbit, which depend on the

A demo can be run by typing:

>> ImpulsiveManeuver

The demo involves a reconfiguration from a projected circle of 1 km radius to one with a 1.2 km radius. The initial
trajectory is offset at an along-track distance of -1 km, and the desired formation is offset at +1 km. Therefore, in
addition to increasing the circle radius, a distance of 2 km must also be traveled. The plots generated by the demo
are shown in Figure 5.7 on the next page. The delta-v is seen to decrease with increasing maneuver duration, as one
would expect. The weighted cost associated with the i

th
maneuver duration is computed as follows:

ci = ∆vi ×
(

∆Ti

∆Tmin

)x

where ∆vi is the predicted delta-v for the i
th

maneuver, ∆Ti is the duration of the i
th

maneuver, ∆Tmin is the minimum
maneuver duration considered, and x is the time weight exponent. This gives a blended objective, minimizing delta-v
and maneuver time. The exponent can be specified in the parameters data structure. Larger values represent a
greater emphasis on minimizing the maneuver duration. In this example, we consider maneuver durations ranging
from 1-5 orbit periods, and the time weight exponent is x = 3. As a result, the minimum cost is achieved with a
maneuver that lasts 3 orbit periods.

More details about this control method can be found in the Formation Flying chapter of PSS’ Spacecraft Attitude and
Orbit Control textbook.

36

http://www.psatellite.com/sct/theory_textbook.php
http://www.psatellite.com/sct/theory_textbook.php

CHAPTER 5. GUIDANCE AND CONTROL 5.2. CONTROL FUNCTIONS

Figure 5.7. Demo of ImpulsiveManeuver

1 2 3 4 5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

x 10
−4

Maneuver Duration [orbits]

Cost vs. Duration

Delta−V
Cost

−2

−1.5

−1

−0.5

0

0.5

−3
−2

−1
0

1
2

−1
0

1
2

3
Delta−V = 0.300841 m/s

y

z

x

5.2.5 Linear Programming

Refer once again to Figure 5.4 on page 33. There are three different linear programming methods used in the Formation
Flying module. They are summarized below.

LPCircular Valid only for circular orbits. Uses LinOrb to create a discrete-time model of the relative orbit
dynamics.

LPEccentric Valid for circular and eccentric orbits. Uses FFEccLinOrb to create a discrete-time model of the
relative orbit dynamics. Requires more memory than LPCircular. Requires very small time-steps to be
accurate for high eccentricity.

LPEccentricGVE Valid for circular and eccentric orbits. Uses GVEDynamics to create a discrete-time model of
the relative orbit dynamics. Requires more memory than LPCircular. Accurate for high eccentricity without
having to decrease timestep.

All of these functions use the Simplex function to compute the impulsive delta-v sequence. The main difference
between each LP method is the dynamic model used to formulate the optimization problem. In each case, the LP
problem is stated as:

min Cu (5.1)
s.t. Au ≤ B

where u > 0 is the absolute value of the applied control, C is a user-defined penalty matrix, and A and b are matrices
derived from the discrete dynamic model, and the terminal constraint. The terminal constraint is for the final state xN

to be sufficiently close to the desired state x∗, or:

|xN − x∗| ≤ ε

If the C matrix is set to all 1’s, then the total cost is simply the 1-norm of the delta-v. This would be equivalent to the
sum of the total delta-v in each axis. The C matrix can be augmented, however, in order to account for time-varying
constraints on the control system. For example, if there is a period of time during the maneuver time window when
the thrusters cannot be used for some reason, then the elements of the C matrix corresponding to those times can be
set very high. The simplex method will naturally avoid applying control at those high cost times.

37

5.2. CONTROL FUNCTIONS CHAPTER 5. GUIDANCE AND CONTROL

To see a comparison of the LPCircular algorithm with the closed-form solution, use the LPvsCF function. This
function plans a reconfiguration maneuver using the LP method for circular orbits, and the closed-form solution, then
creates plots that compare the results. The full usage of the function is:

>> [uLP,uCF,xLP,xCF] = LPvsCF(el0, g0, gF, dT, nOrbMvr, nOrbSim);

where el0 is the reference orbit element vector, g0 and gF are the initial and final (desired) geometric parameters,
dT is the timestep, nOrbMvr is the number of orbits for the maneuver to last, and nOrbSim is the number of orbits
for the full simulation. The function can be called with no inputs and a default set of geometric parameters will be
used. The default reconfiguration is from a 1 km leader follower to a 1 km in-plane ellipse, offset at +3 km.

>> [uLP,uCF,xLP,xCF]=LPvsCF;
CF Total DeltaV: 0.363511 m/s
LP Total DeltaV: 0.336736 m/s
Delta-V Percent Error: 7.365703
Final Position Error: 6.935592 m

The resulting plots are shown in Figure 5.8. The delta-v sequence and maneuver trajectory for the two methods are

Figure 5.8. Delta-V and Trajectory Results from LPvsCF

2430 5340 8260

−1.5

−1

−0.5

0

0.5

1

x 10
−3 Analytic Solution

∆V
[m/s]

0 2040 2140 2330 5730
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3 LP Solution

x
y
z

1 1.5 2 2.5 3 3.5

−1

−0.5

0

0.5

1

Along−Track, y [km]

R
ad

ia
l,

x
[k

m
]

Analytic
LP

different, but they both achieve the same final state and use nearly the same total delta-v.

For eccentric orbits, when the relative dynamics are based in the cartesian Hills frame, it becomes important to dis-
cretize the dynamics at a smaller timestep to maintain accuracy. This is demonstrated with the LPPerformanceDemo
script. This demo calls the LPEccentric function over a range of eccentricity values and using a range of sampling
times. The maneuver duration is fixed at 1 orbit for all cases, so the smaller sampling time is achieved by increasing
the number of samples over the orbit. The plot in Figure 5.9 on the facing page summarizes the results. For high
eccentricities, it is clear that a much larger number of samples must be used in order to maintain sufficient accuracy in
the maneuver planning.

For high eccentricity orbits, it is best to express the relative dynamics using Gauss’ variational equations. The control
function for this frame is LPEccentricGVE. In this case, the relative state is expressed as orbital element differences.
The advantage with using Gauss’ variational equations is that there is much less linearization error than there is in the
rectilinear Hill’s frame. The linearization error for Hills-frame relative dynamics grows very rapidly with increasing
eccentricity. An illustrative comparison between GVE-based and Hills-frame-based control is provided in the demo:
EccentricControlAnalysis.

The output is shown below.

>> EccentricControlAnalysis
Planning a maneuver using "LPEccentric" and "LPEccentricGVE"...

38

CHAPTER 5. GUIDANCE AND CONTROL 5.2. CONTROL FUNCTIONS

Figure 5.9. Position Error vs. Number of Samples for Increasing Eccentricity

 100 200 450 1000
0

100

200

300

400

500

600

700

800

of Samples

P
os

iti
on

 E
rr

or
 (

m
)

0.05
 0.1
 0.3
 0.5

Applying the maneuver and propagating dynamics in relative frames...

Now applying impulsive delta-vs to absolute with Keplerian propagation...
Position error norm between - Hills prop and GVE prop: 0.000553 km
Position error norm between - Hills prop and Keplerian: 0.044727 km
Position error norm between - GVE prop and Keplerian: 0.008876 km

Now integrating the reference orbit and two controlled orbits in the ECI frame...

Position error norm between - Hills prop and Integrated: 0.297516 km
Position error norm between - GVE prop and Integrated: 0.031266 km

The resulting plots are shown in Figure 5.10 on the next page. The maneuver is designed to take the relative state to
zero, to enable an easy visual analysis of the performance. The top two plots (left to right) show the xyz components
of the trajectory over time, for the 6 different simulations. The plot on the left compares the relative orbit simulations
to the Keplerian propagations. The plot on the right compares the relative orbit simulations to the inertial frame
simulations. The bottom plot shows the position magnitude for all simulations. Both control methods (Hills-frame-
based and GVE-based) perform well when the dynamics are simulated in the relative frame. This is to be expected,
because the solutions are obtained from the exact same dynamic model used for the simulation. When the solutions
are applied in an inertial frame (Keplerian orbits and ECI frame integration), the error is seen to increase. The bottom
plot clear shows, however, that GVE-based control results in substantially smaller error than the Hills-frame-based
control.

39

5.2. CONTROL FUNCTIONS CHAPTER 5. GUIDANCE AND CONTROL

Figure 5.10. Plots from EccentricControlAnalysis

0 0.5 1 1.5 2
−5

0

5

10

15

20
x 10

−3

Time [orbits]

P
os

iti
on

 [k
m

]

0 0.5 1 1.5 2
−5

0

5

10

15

20
x 10

−3

Time [orbits]

P
os

iti
on

 [k
m

]

Hills−Frame Soln − Relative Propagation
GVE−Frame Soln − Relative Propagation
Hills−Frame Soln − ECI Integration
GVE−Frame Soln − ECI Integration

0 0.5 1 1.5 2
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

Time [orbits]

|P
os

. E
rr

or
| [

km
]

Hills − Relative Dynamics
GVE − Relative Dynamics
Hills − Keplerian Orbits
GVE − Keplerian Orbits
Hills − ECI Integration
GVE − ECI Integration

40

CHAPTER 6

SIMULATIONS

This chapter describes the different simulation tools available in the Formation Flying module.

6.1 Overview

In addition to the many functions used for modeling relative orbit dynamics, the Formation Flying module also pro-
vides some high level tools for running controlled simulations. The three main simulation functions are summarized
in Table 6.1.

Table 6.1. Simulation Overview

Function # Sat’s # Teams Software
FFMaintenanceSim 2 0 Control
DFFSim 2+ 1 Control, Distributed Guidance
DFFSimulation 2+ 1+ Control, Distributed Guidance, Team Management

The function FormationMaintenance allows the simulation of two spacecraft (therefore one relative orbit) in
a circular orbit with configurable settings for disturbances, control parameters, noise levels, etc. This simulation is
most useful for evaluating the performance of relative orbit control strategies and quantifying the effect of various
disturbances.

The function DFFSim enables you to run decentralized formation flying (DFF) simulations involving multiple space-
craft on a single team. This simulation is most useful for evaluating the performance of the distributed guidance
algorithms.

The function DFFSimulation] runs the complete software-integrated decentralized formation flying (DFF) simula-
tion. This simulation utilizes a set of software modules in MATLAB that were developed under NASA SBIR funding.
The software modules enable decentralized guidance, control and team management for an arbitrary number of space-
craft in a hierarchical team organization. This simulation is most useful for developing strategies for the autonomous
guidance and control of large formations.

Each of these tools is described in more detail in the remaining sections.

41

6.2. FFMAINTENANCESIM CHAPTER 6. SIMULATIONS

6.2 FFMaintenanceSim

The function FFMaintenanceSim can be used to simulate the controlled relative motion of 2 spacecraft in a circular
reference orbit. This function takes one input: a data structure with a variety of simulation options.

To create a data structure, use the function FFMaintenanceTests. This function can be used to store multiple
sets of simulation options. The function is provided with one stored scenario, but you can add more. To see a list of
available scenarios, just type the function name:

>> FFMaintenanceTests;

The following cases are stored:
===
iplf to cipe reconfig
===

The abbreviated scenario name means a reconfiguration from an IPLF (in-plane leader follower) to a CIPE (centered
in-plane ellipse) formation. In this particular scenario, the IPLF formation is at 300 meters distance, and the CIPE
formation has a semi-major axis of 60 meters.

Now create a data structure called options.

>> options = FFMaintenanceTests(’iplf to cipe reconfig’);

To see a fully detailed explanation of the simulation options, type: “help FFMaintenanceSim”. To run a simu-
lation:

data = FFMaintenanceSim(options);

To generate several plots of the simulation results:

>> FFMaintenancePlotter(data);

Now run the same simulation, but this time change the control method. The original control method was set to “1”,
which indicates the closed-form solution was used. The closed-form solution returns the fuel-optimal solution for the
given time window, but it is only valid for a time window that lasts a whole number of orbits. We will now use a linear
programming method to compute the fuel-optimal solution over a shorter time window.

>> options.controlMethod = 2;
>> options.window.nOrbMin = 0.25;
>> options.window.nOrbMax = 0.75;
>> data2 = FFMaintenanceSim(options);

The above commands first set the control method to 2, so that the linear programming (LP) method will be used in
planning the maneuver. Next the the time window of the maneuver is specified. The duration must last between 0.25
and 0.75 orbit periods.

The two trajectories are shown below. The initial trajectory is shown on the left. This corresponds to the closed-form
solution for control. The maneuver lasted 3 orbits in this case. The second trajectory is shown on the right. The
maneuver lasted 0.75 orbits here, and the LP method was used for control.

Examination of the total delta-v confirms what we expect. The faster reconfiguration requires substantially more
delta-v.

>> sum(Mag(data2.dV))*1e3
ans =

0.0762591248797972
>> sum(Mag(data.dV))*1e3
ans =

0.0164223436811058

42

CHAPTER 6. SIMULATIONS 6.3. DFFSIM

Figure 6.1. In-Plane Trajectories for Slow and Fast Reconfigurations

6.3 DFFSim

The function DFFSim is meant as an analysis tool for testing and evaluating the performance of the decentralized
formation (DFF) flying guidance and control algorithms. This function is valid only for circular orbits.

The usage for the DFFSim function is:

[t,el,fH,xH,dEl,dElDes] = DFFSim(el0, dEl0, teamGoals, dT, planTime, nOrbits, J2)

The help header for this function provides detailed information about all of the inputs and outputs. Basically, you
specify the reference orbit, an array of initial orbital element differences, and the desired formation geometry in
terms of a teamGoals data structure. When the simulation runs, it uses the decentralized guidance algorithms to
cooperatively assign target states to all satellites, such that the desired geometry is achieved. The individual satellites
then use their local control laws to independently plan maneuvers to reach and maintain those target states.

By just typing:

>> DFFSim;

a very illustrative demo can be seen. The built-in demo has 6 relative satellites that start out in a leader-follower
formation and reconfigure to a projected circle. A plot of the resulting trajectories, as shown in the AnimationGUI,
is shown below.

6.4 DFFSimulation

6.4.1 Introduction

This simulation runs the full software-integrated simulation of the decentralized formation flying (DFF) system devel-
oped by PSS. The next section provides a brief overview of the software. If you would like to learn more about the
software design, you can download the DFF Prototype Design Document from the PSS website at:

http://www.psatellite.com/sct/pdfs/dff design doc.pdf

Following the overview in the next section, the remaining sections describe how to run a simulation, view the results,
and prepare command lists.

43

http://www.psatellite.com/sct/pdfs/dff_design_doc.pdf

6.4. DFFSIMULATION CHAPTER 6. SIMULATIONS

Figure 6.2. DFFSim Reconfiguration Demo

6.4.2 Software Overview

The MATLAB prototype of the DFF system was designed to emulate the object-oriented and message-passing features
of the MANTA software. A high-level block diagram of the DFF system is shown in Figure 6.3 on the next page. The
dashed line surrounds the core DFF software, which is considered mission-independent. Each of the external software
and hardware components require a separate interface. These interfaces are specific to the spacecraft design and are
therefore implemented as “Interface plugins”, separate from the core DFF system. The same software resides on every
spacecraft in the cluster.

The system consists of 10 software modules. In the MANTA environment, the modules are implemented as separate,
single-threaded tasks that communicate with one another through an efficient messaging system. In the MATLAB
prototype, the modules are written as separate functions with persistent memory. The message-passing functionality
and object-oriented design is emulated in MATLAB to facilitate a more direct transition to C++. The arrows connecting
the modules indicate the flow of messages within the system. Individual connections are not shown for the Command
Processing and Parameter Database, as they communicate with all other modules. The Team Management, Guidance
Law, and Control Law modules require communication with other spacecraft. Inter-spacecraft communication is
handled with an ISL Management module, which is designed to enable fault-tolerant message-passing throughout the
cluster.

The primary functions of each module are summarized below.

• DFFCommandProcessing – Receives commands from the ground station and forwards them to the appro-
priate module(s). Any commands that update the value of internal parameters are also sent to the Parameter
Database.

44

CHAPTER 6. SIMULATIONS 6.4. DFFSIMULATION

Figure 6.3. Block Diagram of the Task-Based Software Architecture for the DFF System

DFF software module

Non-DFF software

External sub-system

Interface Plugin. Provides the interface between DFF software and other software or external subsystems.

Guidance
Law

Control
Law

Collision
Avoidance

Team
Management

Coordinate
Transform

Relative
Navigation

Delta-V
Management

Collision
Monitor

ISL
Management

Attitude
Management

Command
Processor

Parameter
Database

ISL

Thrusters

ADCS

GPS

Uplink/
Downlink

• DFFParameterDatabase – Receives parameter updates from the Command Processing module. Serves as
a central repository for parameters that may be requested at any time by other modules. Is used to initialize all
other modules at startup.

• DFFCoordinateTransformation – Transforms the state estimate from the Relative Navigation module
into appropriate coordinate frames as required by the DFF algorithms.

• DFFTeamManagement – Maintains the hierarchical team organization of the cluster. Provides autonomous
team formation and autonomous reference rollover capabilities.

• DFFGuidanceLaw – Determines the desired relative trajectory of all spacecraft based upon the desired geom-
etry of the team or cluster.

• DFFControlLaw – Plans impulsive maneuvers to achieve the desired relative trajectory.

• DFFCollisionMonitor – Monitors the probability of a collision (over a given time window) with other
spacecraft in the cluster, and provides a preemptive collision avoidance capability.

• DFFISLManagement – Interfaces with the ISL subsystem on the spacecraft. Enables internal DFF messages
to be sent to and received from other spacecraft.

• DFFDeltaVManagement – Interfaces with the thruster(s) subsystem on the spacecraft. Receives delta-v
commands from the Control Law and Collision Avoidance modules. Sends commands to fire thruster(s) at the
appropriate times to achieve the desired delta-v. Computes the required attitude that the spacecraft must have
for each thruster firing, if necessary.

45

6.4. DFFSIMULATION CHAPTER 6. SIMULATIONS

• DFFAttitudeManagement – Interfaces with the ADCS. Receives attitude commands from the Delta-V
Management module. Commands the ADCS to slew to the desired quaternion prior to the thruster firing.

6.4.3 Running a Simulation

The function DFFSimulation runs the full software-integrated simulation of the decentralized formation flying
(DFF) system developed by PSS.

All of the functions used to run this simulation are stored in the IntegratedSim directory. To run a simulation:

>> d = DFFSimulation(sim);

The input sim is a DFF simulation data structure. This data structure stores the initial conditions for the simulation,
as well as several simulation parameters. It can be generated by calling one of the many initialization functions, which
are stored in the folder: IntegratedSim/Initialize. For example:

>> sim = DemoManeuverSimStruct;

This is a simple LEO simulation that lasts for 2 orbit periods. It involves a single maneuver that takes one spacecraft
from the origin of the relative frame to a 1 km leader-follower formation. You can use this or any of the provided
initialization functions as an example for customizing your own simulation.

As the simulation is running, a Time GUI will show the status. You can use the buttons on the Time GUI to hide /
show the Message Queue window, and to hide / show the Team Organization window. Example screenshots of these
windows are shown in Figure 6.4. These examples are taken from the “Autonomous Team Formation” simulation,
initialized with AutoFormSimStruct.

Figure 6.4. Simulation Display Windows

46

CHAPTER 6. SIMULATIONS 6.4. DFFSIMULATION

6.4.4 Viewing Simulation Results

After running the simulation, the data is stored in the output variable d. You can load this data into the PlottingTool
as follows:

>> PlottingTool(’load sim data’, d);

This will display the raw data recorded from the simulation in an organized GUI that was designed for specifically
for viewing simulation results. The raw data consists of the standard state information for each satellite: ECI position
and velocity, the angular rate and ECI-to-body quaternion, and the applied force and torque. You can apply a DFF
plotting template to this raw data to organize it and compute new derived quantities, such as the relative Hill’s frame
state information. To do so, select Template-¿Apply from the menu, or press CNTRL+A (CMD+A for Macs). Next,
select the mat-file DFFPlotting.mat. Applying this template will cause the raw data points to be organized into
groups, some of the “un-interesting” raw data will be hidden, and new data will be derived. A screenshot of the
PlottingTool is shown in Figure 6.5 after the template has been applied.

Figure 6.5. PlottingTool With Simulation Data and Applied Template

6.4.5 Preparing Command Lists

Every DFF initialization function has an accompanying command file. The command files store a time-tagged list
of commands to be processed by the DFF software during the simulation. These files are stored in the directory
IntegratedSim/CommandLists.

Each of the command files generates an array of command data structures. To see the command list for the simulation
discussed in the above sections, type:

cmd = DemoManeuverCommandList;

The command lists enable you to control the sequence of events that take place in the simulation. You can use this and
other command files as an example for writing your own command lists.

47

6.4. DFFSIMULATION CHAPTER 6. SIMULATIONS

48

CHAPTER 7

FORMATION FLYING REFERENCES

7.1 Web Sites

The website at Princeton Satellite Systems provides a discussion of formation flying technologies and the development
of autonomous guidance and control software for decentralized space systems.

http://www.psatellite.com/technologies/html/formationflying.php

JPL provides a website with information on upcoming formation flying programs and developing technologies. There
is also a link to the formation control testbed here.

http://planetquest.jpl.nasa.gov/technology/formation flying.cfm

NASA Goddard Space Flight Center has developed a GPS-enhanced orbit navigation system (GEONS). This website
discusses the operation and performance of GEONS, and how it can be used for LEO formation flying missions.

http://geons.gsfc.nasa.gov/

Professor Jon How at MIT has done a considerable amount of work on the application of carrier-phase differential GPS
(CDGPS) in relative navigation between multiple spacecraft. This website describes hardware-in-the-loop results that
demonstrate the achievable navigation accuracy of this system.

http://www.mit.edu/%7Ejhow/gps1.htm

The SPHERES program at MIT is an on-orbit demonstration and validation testbed for guidance, navigation, control
and autonomy for formation flying spacecraft.

http://ssl.mit.edu/spheres/index.html

Cornell University was selected in 2007 as the winner of the University Nanosat-4 competition. The CUSat design
consists of two satellites that will use CDGPS to perform relative navigation, micro PPTs to perform relative orbit
control, and cameras to conduct visual inspection of each other.

http://cusat.cornell.edu/

49

file:www.psatellite.com/technologies/html/formationflying.php
http://planetquest.jpl.nasa.gov/technology/formation_flying.cfm
http://geons.gsfc.nasa.gov/
http://www.mit.edu/%7Ejhow/gps1.htm
http://ssl.mit.edu/spheres/index.html
http://cusat.cornell.edu/

7.2. PUBLICATIONS CHAPTER 7. FORMATION FLYING REFERENCES

7.2 Publications

Formation flying is a relatively new and specialized technology. As such, the foundation of literature on the topic
is based almost entirely in the world of journal articles and conference papers. This section and the accompanying
bibliography provides a catalog of several papers used (and written) by PSS staff in the course of our formation flying
research and in the development of this product.

The first place to find information relevant to this software is the PSS textbook: Spacecraft Attitude and Orbit Control.
This textbook contains a wealth of theory on attitude and orbit control system design for spacecraft, and includes a
chapter dedicated to formation flying. It is available for purchase on our website.

Missions and Benchmark Problems
[BMLM00, CLFB03, Ian07, LS01, Lei04, Tyl, MMS, SSC, Carb, Law07]

Formation Flying Software
[Mue03, MB03, Mue04, MT05b, MT05a]

Orbital Element Differences
[GA03, SVJA00, SA01b, SA01a, SA02]

Formation Flying in Circular Orbits
[CW60, BMLM00, SVJA00, SA01a, SA02, MB03, Mue04, MT05b]

Relative Dynamics and Control in Eccentric Orbits
[Bro03, ITH02, Law63, TH01, YA02, BH04, MB03, Mue04, MT05b]

Maneuver Planning with LP Methods
[TH01, TIH02, RSHF02, MT05b]

Decentralized Formation Control
[Cara, Car00, Spe03, MT05b, MT05a]

50

BIBLIOGRAPHY

[BH04] L. Breger and J. How. Gve-based dynamics and control for formation flying spacecraft. In 2nd Inter-
national Symposium on Formation Flying Missions and Technologies, Washington, D.C., 2004. NASA
Goddard Space Flight Center.

[BMLM00] R. Burns, CA McLaughlin, J. Leitner, and M. Martin. TechSat 21: Formation Design, Control, and
Simulation. Aerospace Conference Proceedings, 2000 IEEE, 7, 2000.

[Bro03] R. A. Broucke. Solution of the elliptic rendezvoud problem with time as the independent variable. Journal
of Guidance, Control and Dynamics, 26(4):615–621, 2003.

[Cara] J. R. Carpenter. Decentralized control of satellite formations. International Journal of Robust and Non-
linear Control, 12:141–161.

[Carb] K. Carpenter. SI - The Stellar Imager. http://hires.gsfc.nasa.gov/si/.

[Car00] J. R. Carpenter. A preliminary investigation of decentralized control for satellite formations. In Proceed-
ings of the IEEE Aerospace Conference, pages 63–74, 2000.

[CLFB03] J. R. Carpenter, J. Leitner, D. Folta, and R. Burns. Benchmark problems for spacecraft formation flying
missions. In Proceedings of the AIAA Guidance, Navigation and Control Conference, number AIAA
2003-5364, Austin, TX, 2003. AIAA.

[CW60] W. H.. Clohessy and R. S. Wiltshire. Terminal guidance system for satellite rendezvous. Journal of
Aerospace Science, (27):653–658, 1960.

[GA03] D.W. Gim and K.T. Alfriend. State transition matrix of relative motion for the perturbed noncircular
reference orbit. Journal of Guidance, Control, and Dynamics, 26(6):956–971, 2003.

[Ian07] B. Iannotta. ”darpa studies launching of satellite in pieces”, 2007.

[ITH02] G. Inalhan, M. Tillerson, and J. How. Relative dynamics and control of spacecraft formations in eccentric
orbits. Journal of Guidance, Control and Dynamics, 25(1), 2002.

[Law63] D. F. Lawden. Optimal Trajectories for Space Navigation. Butterworth, London, 1963.

[Law07] C. Lawshe. Terrestrial planet finder interferometer. http://planetquest.jpl.nasa.gov/
TPF-I/tpf-I_index.cfm, May 2007.

[Lei04] J. Leitner. Formation Flying–The Future of Remote Sensing from Space. International Symposium on
Space Flight Dynamics, Munich, Oct, pages 11–15, 2004.

[LS01] J. Leitner and R. Schnurr. Stellar imager (si): Formation flying. Technical report, NASA Goddard Space
Flight Center, 2001.

[MB03] J. Mueller and M. Brito. A Distributed Flight Software Design For Satellite Formation Flying Control.
In Proceedings of the AIAA Space 2003 Conference, number AIAA 2003-6373, Long Beach, CA, 2003.
AIAA.

[MMS] Magnetospheric multiscale. http://stp.gsfc.nasa.gov/missions/mms/mms.htm.

51

http://hires.gsfc.nasa.gov/si/
http://planetquest.jpl.nasa.gov/TPF-I/tpf-I_index.cfm
http://planetquest.jpl.nasa.gov/TPF-I/tpf-I_index.cfm
http://stp.gsfc.nasa.gov/missions/mms/mms.htm

BIBLIOGRAPHY BIBLIOGRAPHY

[MT05a] J. Mueller and S. Thomas. A scalable system for formation flying guidance and control. In ESA Guidance
Navigation and Control Conference, Loutaki, Greece, October 2005.

[MT05b] J. B. Mueller and S. J. Thomas. Decentralized formation flying control in a multiple-team hierarchy.
Annals of the New York Academy of Sciences, 1065:112–138, 2005.

[Mue03] J. Mueller. A Reconfigurable Decentralized Framework for Formation Flying Control: Phase 1 Final
Report. Technical Report NAS8-03030, Princeton Satellite Systems, July 2003.

[Mue04] J. B. Mueller. A Multiple-Team Organization for Decentralized Guidance and Control of Formation
Flying Spacecraft. In Proceedings of the 1st AIAA Intelligent Systems Conference, number AIAA-2004-
6249, Chicago, IL, Sep 2004. AIAA.

[RSHF02] A. Richards, T. Schouwenaars, J. How, and E. Feron. Spacecraft trajectory planning with avoidance
constraints using mixed-integer linear programming. Journal of Guidance, Control, and Dynamics, 25(4),
2002.

[SA01a] H. Schaub and K.T. Alfriend. Impulsive feedback control to establish specific mean orbit elements of
spacecraft formations. Journal of Guidance, Control, and Dynamics, 24(4):739–745, 2001.

[SA01b] H. Schaub and K.T. Alfriend. J 2 Invariant Relative Orbits for Spacecraft Formations. Celestial Mechan-
ics and Dynamical Astronomy, 79(2):77–95, 2001.

[SA02] H. Schaub and K.T. Alfriend. Hybrid Cartesian and orbit element feedback law for formation flying
spacecraft. J GUID CONTROL DYN, 25(2):387–393, 2002.

[Spe03] J. L. Speyer. Computation and transmission requirements for a decentralized linear-quadratic-gaussian
control problem. IEEE Trans. Automat. Contr., AC-24:266–269, 2003.

[SSC] SSC. Prisma. http://www.ssc.se/?id=7611.

[SVJA00] H. Schaub, S.R. Vadali, J.L. Junkins, and K.T. Alfriend. Spacecraft Formation Flying Control Using
Mean Orbit Elements. Journal of the Astronautical Sciences, 48(1):69–87, 2000.

[TH01] M. Tillerson and J. How. Formation flying control in eccentric orbits. In AIAA Guidance, Navigation and
Control Conference and Exhibit, Montreal, Canada, 2001.

[TIH02] M. Tillerson, G. Inalhan, and J. How. Co-ordination and control of distributed spacecraft systems using
convex optimization techniques. International Journal of Robust Nonlinear Control, 12(1):207–242,
2002.

[Tyl] P. Tyler. Micro-arcsecond x-ray imaging mission. http://maxim.gsfc.nasa.gov/.

[YA02] K. Yamanaka and F. Ankersen. New state transition matrix for relative motion on an arbitrary elliptical
orbit. J GUID CONTROL DYN, 25(1):60–66, 2002.

52

http://www.ssc.se/?id=7611
http://maxim.gsfc.nasa.gov/

INDEX

Alfriend2El, 7
AnimationGUI, 43
AssignmentDemo, 26, 32
AutoFormSimStruct, 46

CheckDeltaVs, 35

DeltaVAnalysis, 36
DFFAttitudeManagement, 46
DFFCollisionMonitor, 45
DFFCommandProcessing, 44
DFFControlLaw, 34, 35, 45
DFFCoordinateTransformation, 45
DFFDeltaVManagement, 45
DFFGuidanceLaw, 45
DFFISLManagement, 45
DFFParameterDatabase, 45
DFFSim, 3, 26, 34, 35, 41, 43, 44
DFFSimulation, 41, 43, 46
DFFTeamManagement, 45
DiscreteHills, 13, 15
DisreteGVE, 15

EccentricControlAnalysis, 38, 40
EccGeometry Structure, 11
ECI2Hills, 8
ECI2MeanElements, 7
El2Alfriend, 7
EstimateCost, 29, 32

FFEcc, 15
FFEccDiscreteHills, 15
FFEccDMatPeriodic, 16
FFEccEstimateCost, 32
FFEccFrameCompare, 15, 16
FFEccGenerateTeamGoals, 32
FFEccIntConst, 15
FFEccLawdensEqns, 15, 16
FFEccLinOrb, 15, 37
FFEccProp, 15
FFIntegrate, 13
FFMaintenanceSim, 36, 41, 42
FFMaintenanceTests, 42
FormationDesignGUI, 3, 19
FormationMaintenance, 41

GenerateTeamGoals, 27, 32
Geometry Structure, 9
GVEDynamics, 15, 37

Hills2Frenet, 8
Hills2LVLH, 8
HillsEqns, 13
HillsEqns.m, 14

ImpulsiveManeuver, 36, 37
InitializeCostMatrix, 31
IsDuplicateState, 29
IterativeImpulsiveControl, 35
IterativeImpulsiveManeuver, 35, 36

LinOrb, 37
LinOrbLQG, 34
LPCircular, 37, 38
LPEccentric, 37, 38
LPEccentricGVE, 37, 38
LPPerformanceDemo, 38
LPvsCF, 38
LQGEccDemo, 34
LVLH2Hills, 8
Lyapunov, 34

OrbElemDiff, 7
Osc2Mean, 7

PlottingTool, 47
PopulateCostMatrix, 31

RelativeOrbitRHS, 13, 14

SetupAssignmentProblem, 31, 32
Simplex, 37

ViewFormation, 27, 28
ViewRelativeMotion, 27

53

	List of Figures
	Overview
	Formation Flying
	Features
	Organization
	Getting Started

	Coordinate Frames
	Overview
	Orbital Element Sets
	Relative Coordinate Systems
	Orbital Element Differences
	Cartesian Coordinate Systems
	Geometric Parameter Sets

	Relative Orbit Dynamics
	Organization
	Relative Dynamics in Circular Orbits
	Relative Dynamics in Eccentric Orbits

	Formation Design
	Introduction
	The Formation Design GUI: An Overview
	How to Use The Formation Design GUI
	Defining the Reference Orbit
	Adding a Satellite
	Saving and Loading Formation Design Files
	Selecting a Satellite
	Creating a Team
	Defining the Relative Geometry
	Viewing Relative State Data
	Viewing the Team Organization
	Viewing Relative Trajectories
	Finding the Minimum Distance

	Guidance and Control
	Guidance Functions
	Formation Flying Guidance
	Team Goals
	Cost Estimation
	Assignment

	Control Functions
	Formation Flying Control
	Standard Feedback Control
	Model Predictive Control
	Closed-Form Solution
	Linear Programming

	Simulations
	Overview
	FFMaintenanceSim
	DFFSim
	DFFSimulation
	Introduction
	Software Overview
	Running a Simulation
	Viewing Simulation Results
	Preparing Command Lists

	Formation Flying References
	Web Sites
	Publications

	Bibliography
	Index

